IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v317y2015icp16-29.html
   My bibliography  Save this article

Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures

Author

Listed:
  • Sheehan, T.
  • Bachelet, D.
  • Ferschweiler, K.

Abstract

Climate change adaptation and mitigation require understanding of vegetation response to climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate vegetation for the Northwest United States using results from 20 different Climate Model Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. Results were generated for representative concentration pathways (RCPs) 4.5 and 8.5 under vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for future projections. For analysis, results were aggregated by three subregions: the Western Northwest (WNW), from the crest of the Cascade Mountains west; Northwest Plains and Plateau (NWPP), the non-mountainous areas east of the Cascade Mountains; and Eastern Northwest Mountains (ENWM), the mountainous areas east of the Cascade Mountains. In the WNW, mean fire interval (MFI) averaged over all climate projections decreases by up to 48%, and potential vegetation shifts from conifer to mixed forest under RCP 4.5 and 8.5 with and without fire suppression. In the NWPP MFI averaged over all climate projections decreases by up to 82% without fire suppression and increases by up to 14% with fire suppression resulting in woodier vegetation cover. In the ENWM, MFI averaged across all climate projections decreases by up to 81%, subalpine communities are lost, but conifer forests continue to dominate the subregion in the future.

Suggested Citation

  • Sheehan, T. & Bachelet, D. & Ferschweiler, K., 2015. "Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures," Ecological Modelling, Elsevier, vol. 317(C), pages 16-29.
  • Handle: RePEc:eee:ecomod:v:317:y:2015:i:c:p:16-29
    DOI: 10.1016/j.ecolmodel.2015.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015003865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Turner & David Conklin & John Bolte, 2015. "Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA," Climatic Change, Springer, vol. 133(2), pages 335-348, November.
    2. Peterman, Wendy & Bachelet, Dominique & Ferschweiler, Ken & Sheehan, Timothy, 2014. "Soil depth affects simulated carbon and water in the MC2 dynamic global vegetation model," Ecological Modelling, Elsevier, vol. 294(C), pages 84-93.
    3. Coops, Nicholas C. & Waring, Richard H., 2011. "Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America," Ecological Modelling, Elsevier, vol. 222(13), pages 2119-2129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick J. Comer & Jon C. Hak & Marion S. Reid & Stephanie L. Auer & Keith A. Schulz & Healy H. Hamilton & Regan L. Smyth & Matthew M. Kling, 2019. "Habitat Climate Change Vulnerability Index Applied to Major Vegetation Types of the Western Interior United States," Land, MDPI, vol. 8(7), pages 1-27, July.
    2. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Turner & David Conklin & John Bolte, 2015. "Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA," Climatic Change, Springer, vol. 133(2), pages 335-348, November.
    2. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    3. Richard Waring & Nicholas Coops, 2016. "Predicting large wildfires across western North America by modeling seasonal variation in soil water balance," Climatic Change, Springer, vol. 135(2), pages 325-339, March.
    4. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    5. Guo, Tong & Weise, Hanna & Fiedler, Sebastian & Lohmann, Dirk & Tietjen, Britta, 2018. "The role of landscape heterogeneity in regulating plant functional diversity under different precipitation and grazing regimes in semi-arid savannas," Ecological Modelling, Elsevier, vol. 379(C), pages 1-9.
    6. Gupta, Rajit & Sharma, Laxmi Kant, 2019. "The process-based forest growth model 3-PG for use in forest management: A review," Ecological Modelling, Elsevier, vol. 397(C), pages 55-73.
    7. Richard H. Waring & Nicholas C. Coops, 2016. "Predicting large wildfires across western North America by modeling seasonal variation in soil water balance," Climatic Change, Springer, vol. 135(2), pages 325-339, March.
    8. Michael J. Case & Joshua J. Lawler, 2016. "Relative vulnerability to climate change of trees in western North America," Climatic Change, Springer, vol. 136(2), pages 367-379, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:317:y:2015:i:c:p:16-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.