IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v132y2015i4p575-588.html
   My bibliography  Save this article

Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes

Author

Listed:
  • Kamaljit Banger
  • Hanqin Tian
  • Bo Tao
  • Wei Ren
  • Shufen Pan
  • Shree Dangal
  • Jia Yang

Abstract

India is very important but relatively unexplored region in terms of carbon studies, where significant environmental changes have occurred in the 20th century that can alter terrestrial net primary productivity (NPP). Here, we used a process-based, Dynamic Land Ecosystem Model (DLEM), driven by land cover and land use change (LCLUC), climate change, elevated atmospheric CO 2 concentration, atmospheric nitrogen deposition (NDEP), and tropospheric ozone (O 3 ) pollution to estimate terrestrial NPP in India during 1901–2010. Over the country, terrestrial NPP showed significant inter-annual variations ranging 1.2 Pg C year −1 to 1.7 Pg C year −1 during the 1901–2010. Overall, multiple environmental changes have increased terrestrial NPP by 0.23 Pg C year −1 . Elevated atmospheric CO 2 concentration has increased NPP by 0.29 Pg C; however climate change has offset a portion of terrestrial NPP (0.11 Pg C) during this study period. On an average, terrestrial NPP reduced by 0.12 Pg C year −1 in drought years; when precipitation was 100 mm year −1 lower than long term average, suggesting that terrestrial carbon cycle in India is strongly linked to climate change. LCLUC, including land conversions and cropland management practices, increased terrestrial NPP by 0.043 Pg C year −1 over the country. Tropospheric O 3 pollution reduced terrestrial NPP by 0.06 Pg C year −1 and the decrease was comparatively higher in croplands than other biomes after the 1980s. Our results have shown that climate change and tropospheric O 3 pollution may partially offset terrestrial NPP increase caused by elevated CO 2 concentration, LCLUC, and NDEP over India. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Kamaljit Banger & Hanqin Tian & Bo Tao & Wei Ren & Shufen Pan & Shree Dangal & Jia Yang, 2015. "Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes," Climatic Change, Springer, vol. 132(4), pages 575-588, October.
  • Handle: RePEc:spr:climat:v:132:y:2015:i:4:p:575-588
    DOI: 10.1007/s10584-015-1448-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1448-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1448-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    2. Hanqin Tian & Jerry M. Melillo & David W. Kicklighter & A. David McGuire & John V. K. Helfrich & Berrien Moore & Charles J. Vörösmarty, 1998. "Effect of interannual climate variability on carbon storage in Amazonian ecosystems," Nature, Nature, vol. 396(6712), pages 664-667, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    2. Raju, Anjumol & Sijikumar, S. & Deb Burman, Pramit Kumar & Valsala, Vinu & Tiwari, Yogesh K. & Mukherjee, Sandipan & Lohani, Priyanka & Kumar, Kireet, 2023. "Very high-resolution Net Ecosystem Exchange over India using Vegetation Photosynthesis and Respiration Model (VPRM) simulations," Ecological Modelling, Elsevier, vol. 481(C).
    3. Deb Burman, Pramit Kumar & A․G․, Prajeesh & Chakraborty, Supriyo & Tiwari, Yogesh K. & Sarma, Dipankar & Gogoi, Nirmali, 2024. "Simulating the ecosystem-atmosphere carbon, water and energy fluxes at a subtropical Indian forest using an ecosystem model," Ecological Modelling, Elsevier, vol. 490(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    2. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    3. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Sohngen, Brent & Tian, Xiaohui, 2016. "Global climate change impacts on forests and markets," Forest Policy and Economics, Elsevier, vol. 72(C), pages 18-26.
    5. Yujie Liu & Qiaomin Chen & Quansheng Ge & Junhu Dai & Yue Dou, 2018. "Effects of climate change and agronomic practice on changes in wheat phenology," Climatic Change, Springer, vol. 150(3), pages 273-287, October.
    6. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    7. Madhusudan Ghosh, 2019. "Climate-smart Agriculture, Productivity and Food Security in India," Journal of Development Policy and Practice, , vol. 4(2), pages 166-187, July.
    8. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    9. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    10. Bhaskar Jyoti Neog, 2022. "Temperature shocks and rural labour markets: evidence from India," Climatic Change, Springer, vol. 171(1), pages 1-20, March.
    11. Birthal, Pratap S. & Hazrana, Jaweriah, 2019. "Crop diversification and resilience of agriculture to climatic shocks: Evidence from India," Agricultural Systems, Elsevier, vol. 173(C), pages 345-354.
    12. Fontes, Francisco & Gorst, Ashley & Palmer, Charles, 2020. "Does choice of drought index influence estimates of drought-induced rice losses in India?," Environment and Development Economics, Cambridge University Press, vol. 25(5), pages 459-481, October.
    13. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    14. Amarnath Tripathi, 2016. "How to Encourage Farmers to Adapt to Climate Change?," IEG Working Papers 369, Institute of Economic Growth.
    15. Naveen P. Singh & Bhawna Anand & Mohd Arshad Khan, 2018. "Micro-level perception to climate change and adaptation issues: A prelude to mainstreaming climate adaptation into developmental landscape in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1287-1304, July.
    16. Francisco Fontes & Ashley Gorst & Charles Palmer, 2021. "Threshold effects of extreme weather events on cereal yields in India," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    17. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    18. Peng Su & Anyu Zhang & Ran Wang & Jing’ai Wang & Yuan Gao & Fenggui Liu, 2021. "Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    19. Narayanan, Sudha & Das, Upasak & Liu, Yanyan & Barrett, Christopher B., 2017. "The “Discouraged Worker Effect” in Public Works Programs: Evidence from the MGNREGA in India," World Development, Elsevier, vol. 100(C), pages 31-44.
    20. Birthal, Pratap S. & Hazrana, Jaweriah & Negi, Digvijay S. & Pandey, Ghanshyam, 2021. "Benefits of irrigation against heat stress in agriculture: Evidence from wheat crop in India," Agricultural Water Management, Elsevier, vol. 255(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:132:y:2015:i:4:p:575-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.