IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v150y2018i3d10.1007_s10584-018-2264-5.html
   My bibliography  Save this article

Effects of climate change and agronomic practice on changes in wheat phenology

Author

Listed:
  • Yujie Liu

    (Chinese Academy of Sciences)

  • Qiaomin Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Quansheng Ge

    (Chinese Academy of Sciences)

  • Junhu Dai

    (Chinese Academy of Sciences)

  • Yue Dou

    (Michigan State University)

Abstract

Phenological changes in crops affect efficient agricultural production and can be used as important biological indicators of local and regional climate change. Although crop phenological changes and their responses to climate change, especially temperature, have been investigated, the impact of agronomic practice such as cultivar shifts and planted date changes on crop phenology remains unclear. Here, we used a long-term dataset (1981–2010) of wheat phenology and associated local weather data from 48 agro-meteorological stations in four temperature zones in China to analyze phenological changes of spring and winter wheat. Trend analysis method was used to estimate changes in the date of growth stages and the duration of growth phases, while sensitivity analysis method was used to qualify the response of growth phase duration to mean temperature (Tmean), total precipitation (PRE), and total sunshine duration (SSD). Using the Crop Environment Resource Synthesis-wheat model, we isolated the impacts of climate change, cultivar selection, and sowing date on phenological change of wheat. Results show that phenological changes were greatest in the warm-temperate zone. Sensitivity analysis indicates that growth phase duration was generally negatively related to Tmean and positively related to PRE and SSD. The positive sensitivity response to Tmean occurred in the tillering to jointing and sowing to maturity growth periods in the warmer temperature zones, suggesting that warmer temperatures during the overwintering period hampered effective vernalization in winter wheat. Modeling results further indicate that reductions in wheat growth duration caused by climate change could be offset by the introduction of new cultivars with high thermal requirements and accelerated with delayed sowing date.

Suggested Citation

  • Yujie Liu & Qiaomin Chen & Quansheng Ge & Junhu Dai & Yue Dou, 2018. "Effects of climate change and agronomic practice on changes in wheat phenology," Climatic Change, Springer, vol. 150(3), pages 273-287, October.
  • Handle: RePEc:spr:climat:v:150:y:2018:i:3:d:10.1007_s10584-018-2264-5
    DOI: 10.1007/s10584-018-2264-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2264-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2264-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yifan & Lou, Yunsheng & Zhang, Yiwei & Xu, Zufei, 2021. "Quantitative contributions of climate change, new cultivars adoption, and management practices to yield and global warming potential in rice-winter wheat rotation ecosystems," Agricultural Systems, Elsevier, vol. 190(C).
    2. Chunlei Wang & Liping Feng & Lu Wu & Chen Cheng & Yizhuo Li & Jintao Yan & Jiachen Gao & Fu Chen, 2020. "Assessment of Genotypes and Management Strategies to Improve Resilience of Winter Wheat Production," Sustainability, MDPI, vol. 12(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    2. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    3. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    5. Madhusudan Ghosh, 2019. "Climate-smart Agriculture, Productivity and Food Security in India," Journal of Development Policy and Practice, , vol. 4(2), pages 166-187, July.
    6. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    7. Bhaskar Jyoti Neog, 2022. "Temperature shocks and rural labour markets: evidence from India," Climatic Change, Springer, vol. 171(1), pages 1-20, March.
    8. Birthal, Pratap S. & Hazrana, Jaweriah, 2019. "Crop diversification and resilience of agriculture to climatic shocks: Evidence from India," Agricultural Systems, Elsevier, vol. 173(C), pages 345-354.
    9. Fontes, Francisco & Gorst, Ashley & Palmer, Charles, 2020. "Does choice of drought index influence estimates of drought-induced rice losses in India?," Environment and Development Economics, Cambridge University Press, vol. 25(5), pages 459-481, October.
    10. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    11. Amarnath Tripathi, 2016. "How to Encourage Farmers to Adapt to Climate Change?," IEG Working Papers 369, Institute of Economic Growth.
    12. Naveen P. Singh & Bhawna Anand & Mohd Arshad Khan, 2018. "Micro-level perception to climate change and adaptation issues: A prelude to mainstreaming climate adaptation into developmental landscape in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1287-1304, July.
    13. Francisco Fontes & Ashley Gorst & Charles Palmer, 2021. "Threshold effects of extreme weather events on cereal yields in India," Climatic Change, Springer, vol. 165(1), pages 1-20, March.
    14. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    15. Peng Su & Anyu Zhang & Ran Wang & Jing’ai Wang & Yuan Gao & Fenggui Liu, 2021. "Prediction of Future Natural Suitable Areas for Rice under Representative Concentration Pathways (RCPs)," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    16. Narayanan, Sudha & Das, Upasak & Liu, Yanyan & Barrett, Christopher B., 2017. "The “Discouraged Worker Effect” in Public Works Programs: Evidence from the MGNREGA in India," World Development, Elsevier, vol. 100(C), pages 31-44.
    17. Birthal, Pratap S. & Hazrana, Jaweriah & Negi, Digvijay S. & Pandey, Ghanshyam, 2021. "Benefits of irrigation against heat stress in agriculture: Evidence from wheat crop in India," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Yawale, M. A. & Daraja, Y. B. & Garko, M. S. & Dawaki, K. D. & Fulani, M. S. & Magashi A. I. & Sa’ad, A. M. & Abdussalam, S. S., 2023. "RESPONSE OF MAIZE (Zea mays L.) GENOTYPES GROWTH CHARACTERS UNDER DROUGHT AND HEAT STRESS CONDITIONS EVALUATED IN SUDAN SAVANNA, NIGERIA," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 3(4), April.
    19. E. Eyshi Rezaei & T. Gaiser & S. Siebert & F. Ewert, 2015. "Adaptation of crop production to climate change by crop substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1155-1174, October.
    20. Pin Wang & Zhao Zhang & Xiao Song & Yi Chen & Xing Wei & Peijun Shi & Fulu Tao, 2014. "Temperature variations and rice yields in China: historical contributions and future trends," Climatic Change, Springer, vol. 124(4), pages 777-789, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:150:y:2018:i:3:d:10.1007_s10584-018-2264-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.