IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v129y2015i1p213-224.html
   My bibliography  Save this article

Challenges and adaptations of farming to climate change in the North China Plain

Author

Listed:
  • Hai-Lin Zhang
  • Xin Zhao
  • Xiao-Gang Yin
  • Sheng-Li Liu
  • Jian-Fu Xue
  • Meng Wang
  • Chao Pu
  • Rattan Lal
  • Fu Chen

Abstract

Climate change has been a concern of policy makers, scientists, and farmers due to its complex nature and far-reaching impacts. It is the right time to analyze the impacts of climate change and potential adaptations, and identify future strategies for sustainable development. This study assessed changes in climatic factors (e.g., temperature and precipitation) at three typical sites (i.e., Luancheng, Feixiang, and Huanghua) in the North China Plain (NCP), and analyzed adaptations of farming practices. Results indicated that the mean annual temperature followed a significant increasing trend during 1981–2011, with 0.57, 0.47, and 0.44 °C decade −1 for Luancheng, Huanghua, and Feixiang, respectively. A significant increase of 0.67, 0.53, and 0.38 °C decade −1 was observed for the winter-wheat (Triticum aestivum L.) season for Luancheng, Huanghua, and Feixiang, respectively (P > 0.05), but no significant change for the summer-corn (Zea mays L.) season for the three sites. The annual accumulated temperature (≥10 °C) increased significantly during 1981–2011 (P > 0.01), with 17.60, 10.49, and 14.09 °C yr −1 for Luancheng, Huanghua, and Feixiang, respectively. There was no significant increase of mean annual precipitation, which had large inter-annual fluctuations among the three sites. In addition, significant challenges lie ahead for the NCP due to climate change, e.g., increasing food grain demand, water shortages, high inputs, high carbon (C) emissions, and decreasing profits. Trade-offs between crop production, water resource conservation, and intensive agricultural inputs will inhibit sustainable agricultural development in the NCP. Farming practices have been adapted to the climate change in the NCP, e.g. late seeding for the winter-wheat, tillage conversion, and water saving irrigation. Therefore, innovative technologies, such as climate-smart agriculture, will play important roles in balancing food security and resources use, enhancing water use efficiency, reducing C emissions in the NCP. Coordinated efforts from the government, scientists, and farmers are also necessary, in response to climate change. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Hai-Lin Zhang & Xin Zhao & Xiao-Gang Yin & Sheng-Li Liu & Jian-Fu Xue & Meng Wang & Chao Pu & Rattan Lal & Fu Chen, 2015. "Challenges and adaptations of farming to climate change in the North China Plain," Climatic Change, Springer, vol. 129(1), pages 213-224, March.
  • Handle: RePEc:spr:climat:v:129:y:2015:i:1:p:213-224
    DOI: 10.1007/s10584-015-1337-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1337-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1337-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry Smit & Ian Burton & Richard Klein & J. Wandel, 2000. "An Anatomy of Adaptation to Climate Change and Variability," Climatic Change, Springer, vol. 45(1), pages 223-251, April.
    2. Jane Qiu, 2010. "China faces up to groundwater crisis," Nature, Nature, vol. 466(7304), pages 308-308, July.
    3. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qiaomin & Liu, Yujie & Ge, Quansheng & Pan, Tao, 2018. "Impacts of historic climate variability and land use change on winter wheat climatic productivity in the North China Plain during 1980–2010," Land Use Policy, Elsevier, vol. 76(C), pages 1-9.
    2. Shengli Liu & Wenbin Wu & Xiaoguang Yang & Peng Yang & Jing Sun, 2020. "Exploring drought dynamics and its impacts on maize yield in the Huang-Huai-Hai farming region of China," Climatic Change, Springer, vol. 163(1), pages 415-430, November.
    3. Uttam Khanal & Clevo Wilson & Boon L. Lee & Viet-Ngu Hoang, 2018. "Climate change adaptation strategies and food productivity in Nepal: a counterfactual analysis," Climatic Change, Springer, vol. 148(4), pages 575-590, June.
    4. Lichao Zhai & Lihua Zhang & Haipo Yao & Mengjing Zheng & Bo Ming & Ruizhi Xie & Jingting Zhang & Xiuling Jia & Junjie Ji, 2021. "The Optimal Cultivar × Sowing Date × Plant Density for Grain Yield and Resource Use Efficiency of Summer Maize in the Northern Huang–Huai–Hai Plain of China," Agriculture, MDPI, vol. 12(1), pages 1-15, December.
    5. Yong Liu & Jorge Ruiz-Menjivar & Junbiao Zhang, 2023. "Do soil nutrient management practices improve climate resilience? Empirical evidence from rice farmers in central China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10029-10054, September.
    6. Dianyuan Ding & Hao Feng & Ying Zhao & Wenzhao Liu & Haixin Chen & Jianqiang He, 2016. "Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China," Climatic Change, Springer, vol. 138(1), pages 157-171, September.
    7. Wang, Xiaowen & Li, Liang & Ding, Yibo & Xu, Jiatun & Wang, Yunfei & Zhu, Yan & Wang, Xiaoyun & Cai, Huanjie, 2021. "Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    2. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    3. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    4. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    5. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    6. Singh, Amarendra Pratap & Narayanan, Krishnan, 2016. "How can weather affect crop area diversity? Panel data evidence from Andhra Pradesh, a rice growing state of India," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(2), pages 1-10, August.
    7. Md. Humayain Kabir & Mohammed Abdul Baten, 2024. "Sustainability of Climate Change Adaptation Practices in South-Western Coastal Area of Bangladesh," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 12(5), pages 1-1, July.
    8. Shannon McNeeley, 2012. "Examining barriers and opportunities for sustainable adaptation to climate change in Interior Alaska," Climatic Change, Springer, vol. 111(3), pages 835-857, April.
    9. Seraina Buob & Gunter Stephan, 2008. "Global Climate Change and the Funding of Adaptation," Diskussionsschriften dp0804, Universitaet Bern, Departement Volkswirtschaft.
    10. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    11. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    12. Dirk Heinrichs & Kerstin Krellenberg & Michail Fragkias, 2013. "Urban Responses to Climate Change: Theories and Governance Practice in Cities of the Global South," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 37(6), pages 1865-1878, November.
    13. Mavi, Can Askan, 2020. "Can harmful events be another source of environmental traps?," Journal of Mathematical Economics, Elsevier, vol. 89(C), pages 29-46.
    14. Daniel Scott & Geoff McBoyle, 2007. "Climate change adaptation in the ski industry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(8), pages 1411-1431, October.
    15. Sara Barron & Glenis Canete & Jeff Carmichael & David Flanders & Ellen Pond & Stephen Sheppard & Kristi Tatebe, 2012. "A Climate Change Adaptation Planning Process for Low-Lying, Communities Vulnerable to Sea Level Rise," Sustainability, MDPI, vol. 4(9), pages 1-33, September.
    16. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    17. Sahrish Saeed & Muhammad Sohail Amjad Makhdum & Sofia Anwar & Muhammad Rizwan Yaseen, 2023. "Climate Change Vulnerability, Adaptation, and Feedback Hypothesis: A Comparison of Lower-Middle, Upper-Middle, and High-Income Countries," Sustainability, MDPI, vol. 15(5), pages 1-25, February.
    18. Trawöger, Lisa, 2014. "Convinced, ambivalent or annoyed: Tyrolean ski tourism stakeholders and their perceptions of climate change," Tourism Management, Elsevier, vol. 40(C), pages 338-351.
    19. Fan, Yubing & McCann, Laura E., 2015. "Households' Adoption of Drought Tolerant Plants: An Adaptation to Climate Change?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205544, Agricultural and Applied Economics Association.
    20. Popular Gentle & Rik Thwaites & Digby Race & Kim Alexander & Tek Maraseni, 2018. "Household and community responses to impacts of climate change in the rural hills of Nepal," Climatic Change, Springer, vol. 147(1), pages 267-282, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:129:y:2015:i:1:p:213-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.