IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v128y2015i1p71-84.html
   My bibliography  Save this article

Spatially resolved estimation of ozone-related mortality in the United States under two representative concentration pathways (RCPs) and their uncertainty

Author

Listed:
  • Young-Min Kim
  • Ying Zhou
  • Yang Gao
  • Joshua Fu
  • Brent Johnson
  • Cheng Huang
  • Yang Liu

Abstract

The spatial pattern of the uncertainty in air pollution-related health impacts due to climate change has rarely been studied due to the lack of high-resolution model simulations, especially under the Representative Concentration Pathways (RCPs), the latest greenhouse gas emission pathways. We estimated future tropospheric ozone (O 3 ) and related excess mortality and evaluated the associated uncertainties in the continental United States under RCPs. Based on dynamically downscaled climate model simulations, we calculated changes in O 3 level at 12 km resolution between the future (2057 and 2059) and base years (2001–2004) under a low-to-medium emission scenario (RCP4.5) and a fossil fuel intensive emission scenario (RCP8.5). We then estimated the excess mortality attributable to changes in O 3 . Finally, we analyzed the sensitivity of the excess mortality estimates to the input variables and the uncertainty in the excess mortality estimation using Monte Carlo simulations. O 3 -related premature deaths in the continental U.S. were estimated to be 1312 deaths/year under RCP8.5 (95 % confidence interval (CI): 427 to 2198) and −2118 deaths/year under RCP4.5 (95 % CI: −3021 to −1216), when allowing for climate change and emissions reduction. The uncertainty of O 3 -related excess mortality estimates was mainly caused by RCP emissions pathways. Excess mortality estimates attributable to the combined effect of climate and emission changes on O 3 as well as the associated uncertainties vary substantially in space and so do the most influential input variables. Spatially resolved data is crucial to develop effective community level mitigation and adaptation policy. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Young-Min Kim & Ying Zhou & Yang Gao & Joshua Fu & Brent Johnson & Cheng Huang & Yang Liu, 2015. "Spatially resolved estimation of ozone-related mortality in the United States under two representative concentration pathways (RCPs) and their uncertainty," Climatic Change, Springer, vol. 128(1), pages 71-84, January.
  • Handle: RePEc:spr:climat:v:128:y:2015:i:1:p:71-84
    DOI: 10.1007/s10584-014-1290-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1290-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1290-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-François Lamarque & G. Kyle & Malte Meinshausen & Keywan Riahi & Steven Smith & Detlef Vuuren & Andrew Conley & Francis Vitt, 2011. "Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways," Climatic Change, Springer, vol. 109(1), pages 191-212, November.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. San José, Roberto & Pérez, Juan Luis & Pérez, Libia & Gonzalez Barras, Rosa Maria, 2018. "Effects of climate change on the health of citizens modelling urban weather and air pollution," Energy, Elsevier, vol. 165(PA), pages 53-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinyi Li & Rafael P. Fernandez & Ryan Hossaini & Fernando Iglesias-Suarez & Carlos A. Cuevas & Eric C. Apel & Douglas E. Kinnison & Jean-François Lamarque & Alfonso Saiz-Lopez, 2022. "Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    4. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    5. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    6. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    8. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    10. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    11. Hosmay Lopez & Sang-Ki Lee & Dongmin Kim & Andrew T. Wittenberg & Sang-Wook Yeh, 2022. "Projections of faster onset and slower decay of El Niño in the 21st century," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Hamdi-Cherif, Meriem & Waisman, Henri & Guivarch, Céline & Hourcade, Jean-Charles, 2012. "Mitigation costs in second-best economies: time profile of emission reductions and sequencing of accompanying measures," Conference papers 332206, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    14. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    15. Jung-A Yang & Sooyoul Kim & Sangyoung Son & Nobuhito Mori & Hajime Mase, 2020. "Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios," Climatic Change, Springer, vol. 162(2), pages 425-442, September.
    16. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    17. Guo, Jinggang & Prestemon, Jeffrey & Johnston, Craig, 2023. "Forest market outlook in the Southern United States," Forest Policy and Economics, Elsevier, vol. 157(C).
    18. Fahad Saeed & Mansour Almazroui & Nazrul Islam & Mariam Saleh Khan, 2017. "Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1635-1647, July.
    19. Zhongwen Xu & Liming Yao & Yin Long, 2020. "Climatic Impact Toward Regional Water Allocation and Transfer Strategies from Economic, Social and Environmental Perspectives," Land, MDPI, vol. 9(11), pages 1-17, November.
    20. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:128:y:2015:i:1:p:71-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.