IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v122y2014i4p747-755.html
   My bibliography  Save this article

Using simple data experiments to explore the influence of non-temperature controls on maize yields in the mid-West and Great Plains

Author

Listed:
  • Stephen Shaw
  • Dhaval Mehta
  • Susan Riha

Abstract

Several recent papers have suggested that high temperatures are associated with reduced maize yields. To better understand the conditions under which this association may occur, we conduct two analyses on maize yields from 1981 to 2011 for 100 U.S. counties with large areas planted to maize in the mid-West and Great Plains. First, we compare statistical yield models in non-irrigated and extensively irrigated counties, after carefully evaluating the degree of crop irrigation in a county and selecting only counties with no irrigation or extensive irrigation. We find that yields in extensively irrigated counties have minimal dependency on temperature factors in the regression model. Second, we compare statistical yield models across non-irrigated counties using data sets with and without years with known extreme moisture anomalies. We find that for Minnesota, Central Iowa, and Northern Illinois, the sufficiency of yield models based only on temperature factors are highly leveraged by the few years with extreme moisture anomalies. In western Iowa and much of Illinois, temperature factors consistently explain a moderate amount of yield variability, even when extreme moisture anomalies are removed. In general, these findings suggest that in many regions maize yields are not solely dependent on temperature and that other factors (e.g. humidity, soil moisture, flooding) likely need to be accounted for to improve statistical yield models and to make accurate projections of maize yield in a changing climate. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Stephen Shaw & Dhaval Mehta & Susan Riha, 2014. "Using simple data experiments to explore the influence of non-temperature controls on maize yields in the mid-West and Great Plains," Climatic Change, Springer, vol. 122(4), pages 747-755, February.
  • Handle: RePEc:spr:climat:v:122:y:2014:i:4:p:747-755
    DOI: 10.1007/s10584-014-1062-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1062-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1062-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ethan E. Butler & Peter Huybers, 2013. "Adaptation of US maize to temperature variations," Nature Climate Change, Nature, vol. 3(1), pages 68-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    2. Pires, Marcel Viana & Cunha, Dênis Antônio da, 2014. "Climate Change and Adaptive Strategies in Brazil: the economic effects of genetic breeding," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 52(4), January.
    3. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    4. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    6. Chonabayashi, Shun, 2014. "Accounting for Land Use Adaptation to Climate Change Impacts on US Agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170710, Agricultural and Applied Economics Association.
    7. Xun Su & Minpeng Chen, 2022. "Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review," Sustainability, MDPI, vol. 14(21), pages 1-23, October.
    8. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).
    9. Bhaskar Jyoti Neog, 2022. "Temperature shocks and rural labour markets: evidence from India," Climatic Change, Springer, vol. 171(1), pages 1-20, March.
    10. Etienne ESPAGNE & Yoro DIALLO & Sébastien MARCHAND, 2019. "Impacts of Extreme Climate Events on Technical Efficiency in Vietnamese Agriculture," Working Paper c1221ee7-5311-4af0-b1b4-3, Agence française de développement.
    11. Cécile Couharde & Rémi Generoso, 2023. "The financial cost of stabilizing US farm income under climate change," Working Papers hal-04159823, HAL.
    12. Geoffrey Heal & Jisung Park, 2016. "Editor's Choice Reflections—Temperature Stress and the Direct Impact of Climate Change: A Review of an Emerging Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 347-362.
    13. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    14. Balsher Singh Sidhu & Zia Mehrabi & Milind Kandlikar & Navin Ramankutty, 2022. "On the relative importance of climatic and non-climatic factors in crop yield models," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    15. Auffhammer, Maximilian, 2022. "Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    16. Michael Keane & Timothy Neal, 2020. "Comparing deep neural network and econometric approaches to predicting the impact of climate change on agricultural yield," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 59-80.
    17. Yaqin He & Brian J. Revell & Bofeng Leng & Zhongchao Feng, 2017. "The Effects of Weather on Oilseed Rape (OSR) Yield in China: Future Implications of Climate Change," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    18. Zhang, Jingfang & Malikov, Emir & Miao, Ruiqing & Ghosh, Prasenjit N., 2024. "Geography of Climate Change Adaptation in U.S. Agriculture: Evidence from Spatially Varying Long-Differences Approach," 2024 Annual Meeting, July 28-30, New Orleans, LA 343758, Agricultural and Applied Economics Association.
    19. Adloff, Susann, 2021. "Adapting to Climate Change: Threat Experience, Cognition and Protection Motivation," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242400, Verein für Socialpolitik / German Economic Association.
    20. Dylan Hogan & Wolfram Schlenker, 2024. "Non-linear relationships between daily temperature extremes and US agricultural yields uncovered by global gridded meteorological datasets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:122:y:2014:i:4:p:747-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.