IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v122y2014i1p283-298.html
   My bibliography  Save this article

Impact of anthropogenic CO 2 on the next glacial cycle

Author

Listed:
  • Carmen Herrero
  • Antonio García-Olivares
  • Josep Pelegrí

Abstract

The model of Paillard and Parrenin (Earth Planet Sci Lett 227(3–4):263–271, 2004) has been recently optimized for the last eight glacial cycles, leading to two different relaxation models with model-data correlations between 0.8 and 0.9 (García-Olivares and Herrero (Clim Dyn 1–25, 2012b)). These two models are here used to predict the effect of an anthropogenic CO 2 pulse on the evolution of atmospheric CO 2 , global ice volume and Antarctic ice cover during the next 300 kyr. The initial atmospheric CO 2 condition is obtained after a critical data analysis that sets 1300 Gt as the most realistic carbon Ultimate Recoverable Resources (URR), with the help of a global compartmental model to determine the carbon transfer function to the atmosphere. The next 20 kyr will have an abnormally high greenhouse effect which, according to the CO 2 values, will lengthen the present interglacial by some 25 to 33 kyr. This is because the perturbation of the current interglacial will lead to a delay in the future advance of the ice sheet on the Antarctic shelf, causing that the relative maximum of boreal insolation found 65 kyr after present (AP) will not affect the developing glaciation. Instead, it will be the following insolation peak, about 110 kyr AP, which will find an appropriate climatic state to trigger the next deglaciation. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Carmen Herrero & Antonio García-Olivares & Josep Pelegrí, 2014. "Impact of anthropogenic CO 2 on the next glacial cycle," Climatic Change, Springer, vol. 122(1), pages 283-298, January.
  • Handle: RePEc:spr:climat:v:122:y:2014:i:1:p:283-298
    DOI: 10.1007/s10584-013-1012-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-1012-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-1012-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Didier Paillard, 1998. "The timing of Pleistocene glaciations from a simple multiple-state climate model," Nature, Nature, vol. 391(6665), pages 378-381, January.
    2. Richard Bintanja & Roderik S.W. van de Wal & Johannes Oerlemans, 2005. "Modelled atmospheric temperatures and global sea levels over the past million years," Nature, Nature, vol. 437(7055), pages 125-128, September.
    3. Dieter Lüthi & Martine Le Floch & Bernhard Bereiter & Thomas Blunier & Jean-Marc Barnola & Urs Siegenthaler & Dominique Raynaud & Jean Jouzel & Hubertus Fischer & Kenji Kawamura & Thomas F. Stocker, 2008. "High-resolution carbon dioxide concentration record 650,000–800,000 years before present," Nature, Nature, vol. 453(7193), pages 379-382, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seth D. Baum, 2023. "Assessing natural global catastrophic risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2699-2719, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    2. Frisch, L.C. & Mathis, J.T. & Kettle, N.P. & Trainor, S.F., 2015. "Gauging perceptions of ocean acidification in Alaska," Marine Policy, Elsevier, vol. 53(C), pages 101-110.
    3. Martin L. Weitzman, 2011. "Additive Damages, Fat-Tailed Climate Dynamics, and Uncertain Discounting," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 23-46, National Bureau of Economic Research, Inc.
    4. Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
    5. Leonardo Vallini & Carlo Zampieri & Mohamed Javad Shoaee & Eugenio Bortolini & Giulia Marciani & Serena Aneli & Telmo Pievani & Stefano Benazzi & Alberto Barausse & Massimo Mezzavilla & Michael D. Pet, 2024. "The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Michael E. Weber & Ian Bailey & Sidney R. Hemming & Yasmina M. Martos & Brendan T. Reilly & Thomas A. Ronge & Stefanie Brachfeld & Trevor Williams & Maureen Raymo & Simon T. Belt & Lukas Smik & Hendri, 2022. "Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Granville Tunnicliffe Wilson & John Haywood & Lynda Petherick, 2022. "Modeling cycles and interdependence in irregularly sampled geophysical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    8. G. M. Mkrtchyan & I. Yu. Blam & S. Yu. Kovalev & Yu. O. Tsvelodub, 2018. "Impact of Climate Change on the Subjective Well-Being of Households in Russia," Regional Research of Russia, Springer, vol. 8(3), pages 281-288, July.
    9. Jennifer Castle & David Hendry, 2020. "Identifying the Causal Role of CO2 during the Ice Ages," Economics Series Working Papers 898, University of Oxford, Department of Economics.
    10. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    11. James Walsh & Esther Widiasih, 2020. "A Discontinuous ODE Model of the Glacial Cycles with Diffusive Heat Transport," Mathematics, MDPI, vol. 8(3), pages 1-24, March.
    12. Enrico Sicignano & Giacomo Di Ruocco & Anna Stabile, 2019. "Quali—A Quantitative Environmental Assessment Method According to Italian CAM, for the Sustainable Design of Urban Neighbourhoods in Mediterranean Climatic Regions," Sustainability, MDPI, vol. 11(17), pages 1-25, August.
    13. Buks Andrew G. & Sobański Konrad, 2023. "Divest or engage? Effective paths to net zero from the U.S. perspective," Economics and Business Review, Sciendo, vol. 9(1), pages 65-93, April.
    14. Thomas F. STOCKER, 2015. "Implications of Climate Science for Negotiators," Working Papers P135, FERDI.
    15. Rhoda Afriyie Mensah & Vigneshwaran Shanmugam & Sreenivasan Narayanan & Nima Razavi & Adrian Ulfberg & Thomas Blanksvärd & Faez Sayahi & Peter Simonsson & Benjamin Reinke & Michael Försth & Gabriel Sa, 2021. "Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    16. Yue, Xiaole & Lv, Ge & Zhang, Ying, 2021. "Rare and hidden attractors in a periodically forced Duffing system with absolute nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    17. , European Marine Board & Boero, Ferdinando & Cummins, Valerie & Gault, Jeremy & Huse, Geir & Philippart, Catharina & Schneider, Ralph & Besiktepe, Sukru & Boeuf, Gilles & Coll, Marta, 2019. "Navigating the Future V: Marine Science for a Sustainable Future," MarXiv vps62, Center for Open Science.
    18. James A. Menking & Sarah A. Shackleton & Thomas K. Bauska & Aron M. Buffen & Edward J. Brook & Stephen Barker & Jeffrey P. Severinghaus & Michael N. Dyonisius & Vasilii V. Petrenko, 2022. "Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. William N. Rom, 2023. "Annals of Education: Teaching Climate Change and Global Public Health," IJERPH, MDPI, vol. 21(1), pages 1-16, December.
    20. J. Jara-Muñoz & D. Melnick & S. Li & A. Socquet & J. Cortés-Aranda & D. Brill & M. R. Strecker, 2022. "The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:122:y:2014:i:1:p:283-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.