IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v121y2013i2p301-315.html
   My bibliography  Save this article

Assessing climate change vulnerability with group multi-criteria decision making approaches

Author

Listed:
  • Yeonjoo Kim
  • Eun-Sung Chung

Abstract

This study developed an approach to assess the vulnerability to climate change and variability using various group multi-criteria decision-making (MCDM) methods and identified the sources of uncertainty in assessments. MCDM methods include the weighted sum method, one of the most common MCDM methods, the technique for order preference by similarity to ideal solution (TOPSIS), fuzzy-based TOPSIS, TOPSIS in a group-decision environment, and TOPSIS combined with the voting methods (Borda count and Copeland’s methods). The approach was applied to a water-resource system in South Korea, and the assessment was performed at the province level by categorizing water resources into water supply and conservation, flood control and water-quality sectors according to their management objectives. Key indicators for each category were profiled with the Delphi surveys, a series of questionnaires interspersed with controlled opinion feedback. The sectoral vulnerability scores were further aggregated into one composite score for water-resource vulnerability. Rankings among different MCDM methods varied in different degrees, but noticeable differences in the rankings from the fuzzy- and non-fuzzy-based methods suggested that the uncertainty with crisp data, rather widely used, should be acknowledged in vulnerability assessment. Also rankings from the voting-based methods did not differ much from those from non-voting-based (i.e., average-based) methods. Vulnerability rankings varied significantly among the different sectors of the water-resource systems, highlighting the need to assess the vulnerability of water-resource systems according to objectives, even though one composite index is often used for simplicity. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Yeonjoo Kim & Eun-Sung Chung, 2013. "Assessing climate change vulnerability with group multi-criteria decision making approaches," Climatic Change, Springer, vol. 121(2), pages 301-315, November.
  • Handle: RePEc:spr:climat:v:121:y:2013:i:2:p:301-315
    DOI: 10.1007/s10584-013-0879-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0879-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0879-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Mohamed Hamouda & Mohamed Nour El-Din & Fawzia Moursy, 2009. "Vulnerability Assessment of Water Resources Systems in the Eastern Nile Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2697-2725, October.
    3. Eun-Sung Chung & Kil Lee, 2009. "Identification of Spatial Ranking of Hydrological Vulnerability Using Multi-Criteria Decision Making Techniques: Case Study of Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2395-2416, September.
    4. S. Eriksen & P. Kelly, 2007. "Developing Credible Vulnerability Indicators for Climate Adaptation Policy Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 495-524, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandras KRYLOVAS & Natalja KOSAREVA & Edmundas Kazimieras ZAVADSKAS, 2016. "Statistical Analysis of KEMIRA Type Weights Balancing Methods," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 19-39, September.
    2. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    3. Nastaran Chitsaz & Mohammad Banihabib, 2015. "Comparison of Different Multi Criteria Decision-Making Models in Prioritizing Flood Management Alternatives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2503-2525, June.
    4. Petros Xepapadeas & Kostas Douvis & Ioannis Kapsomenakis & Anastasios Xepapadeas & Christos Zerefos, 2024. "Assessing the Link between Wildfires, Vulnerability, and Climate Change: Insights from the Regions of Greece," Sustainability, MDPI, vol. 16(11), pages 1-25, June.
    5. Kwangjai Won & Eun-Sung Chung & Sung-Uk Choi, 2015. "Parametric Assessment of Water Use Vulnerability Variations Using SWAT and Fuzzy TOPSIS Coupled with Entropy," Sustainability, MDPI, vol. 7(9), pages 1-19, August.
    6. Horasan, Muhammed Bilal & Kilic, Huseyin Selcuk, 2022. "A multi-objective decision-making model for renewable energy planning: The case of Turkey," Renewable Energy, Elsevier, vol. 193(C), pages 484-504.
    7. Gabriela Reis & Francisco Assis Souza Filho & Donald Robert Nelson & Renan Vieira Rocha & Samiria Maria Oliveira Silva, 2020. "Development of a drought vulnerability index using MCDM and GIS: study case in São Paulo and Ceará, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1781-1799, November.
    8. Babak Zolghadr-Asli & Omid Bozorg-Haddad & Maedeh Enayati & Xuefeng Chu, 2021. "A review of 20-year applications of multi-attribute decision-making in environmental and water resources planning and management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14379-14404, October.
    9. Eun-Sung Chung & Patricia Jitta Abdulai & Hyesun Park & Yeonjoo Kim & So Ra Ahn & Seong Joon Kim, 2016. "Multi-Criteria Assessment of Spatial Robust Water Resource Vulnerability Using the TOPSIS Method Coupled with Objective and Subjective Weights in the Han River Basin," Sustainability, MDPI, vol. 9(1), pages 1-17, December.
    10. Cheng He & Liguo Zhou & Weichun Ma & Yuan Wang, 2019. "Spatial Assessment of Urban Climate Change Vulnerability during Different Urbanization Phases," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    11. Alexei Manso Correa Machado & Petr Iakovlevitch Ekel & Matheus Pereira Libório, 2023. "Goal-based participatory weighting scheme: balancing objectivity and subjectivity in the construction of composite indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4387-4407, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eun-Sung Chung & Kwangjae Won & Yeonjoo Kim & Hosun Lee, 2014. "Water Resource Vulnerability Characteristics by District’s Population Size in a Changing Climate Using Subjective and Objective Weights," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    2. Eun-Sung Chung & Patricia Jitta Abdulai & Hyesun Park & Yeonjoo Kim & So Ra Ahn & Seong Joon Kim, 2016. "Multi-Criteria Assessment of Spatial Robust Water Resource Vulnerability Using the TOPSIS Method Coupled with Objective and Subjective Weights in the Han River Basin," Sustainability, MDPI, vol. 9(1), pages 1-17, December.
    3. Jae Yeol Song & Eun-Sung Chung, 2016. "Robustness, Uncertainty and Sensitivity Analyses of the TOPSIS Method for Quantitative Climate Change Vulnerability: a Case Study of Flood Damage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4751-4771, October.
    4. Ryan Plummer & Rob Loë & Derek Armitage, 2012. "A Systematic Review of Water Vulnerability Assessment Tools," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4327-4346, December.
    5. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    6. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    7. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    8. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    9. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    10. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    11. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    12. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    13. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    14. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    15. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    16. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.
    17. Hsiao, Tzy-yih, 2006. "Establish standards of standard costing with the application of convergent gray zone test," European Journal of Operational Research, Elsevier, vol. 168(2), pages 593-611, January.
    18. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    19. Adel Hatami-Marbini & Madjid Tavana & Kobra Gholami & Zahra Ghelej Beigi, 2015. "A Bounded Data Envelopment Analysis Model in a Fuzzy Environment with an Application to Safety in the Semiconductor Industry," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 679-701, February.
    20. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:121:y:2013:i:2:p:301-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.