IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i3p439-449.html
   My bibliography  Save this article

Climate change impacts: accounting for the human response

Author

Listed:
  • Michael Oppenheimer

Abstract

The assessment of potential impacts of climate change is progressing from taxonomies and enumeration of the magnitude of potential direct effects on individuals, societies, species, and ecosystems according to a limited number of metrics toward a more integrated approach that also encompasses the vast range of human response to experience and risk. Recent advances are both conceptual and methodological, and include analysis of some consequences of climate change that were heretofore intractable. In this article, I review a selection of these developments and represent them through a handful of illustrative cases. A key characteristic of the emerging areas of interest is a focus on understanding how human responses to direct impacts of climate change may cause important indirect and sometimes distant impacts. This realization underscores the need to develop integrated approaches for assessing and modeling impacts in an evolving socioeconomic and policy context. Copyright The Author(s) 2013

Suggested Citation

  • Michael Oppenheimer, 2013. "Climate change impacts: accounting for the human response," Climatic Change, Springer, vol. 117(3), pages 439-449, April.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:3:p:439-449
    DOI: 10.1007/s10584-012-0571-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0571-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0571-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    2. Dominic R. Kniveton & Christopher D. Smith & Richard Black, 2012. "Emerging migration flows in a changing climate in dryland Africa," Nature Climate Change, Nature, vol. 2(6), pages 444-447, June.
    3. Brian D. Wright, 2011. "The Economics of Grain Price Volatility," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(1), pages 32-58.
    4. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    5. Jochen Hinkel & Robert Nicholls & Athanasios Vafeidis & Richard Tol & Thaleia Avagianou, 2010. "Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 703-719, October.
    6. Kaivan Munshi, 2003. "Networks in the Modern Economy: Mexican Migrants in the U. S. Labor Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(2), pages 549-599.
    7. William D. Nordhaus, 2010. "The Economics Of Hurricanes And Implications Of Global Warming," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-20.
    8. Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2011. "Water scarcity and the impact of improved irrigation management: a computable general equilibrium analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 42(3), pages 305-323, May.
    9. Stéphane Hallegatte & Przyluski Valentin & Adrien Vogt-Schilb, 2011. "Building world narratives for climate change impact, adaptation and vulnerability analyses," Post-Print hal-00618688, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanny Groundstroem & Sirkku Juhola, 2019. "A framework for identifying cross-border impacts of climate change on the energy sector," Environment Systems and Decisions, Springer, vol. 39(1), pages 3-15, March.
    2. Fabien Prieur & Ingmar Schumacher, 2016. "The role of conflict for optimal climate and immigration policy," Working Papers 2016.27, FAERE - French Association of Environmental and Resource Economists.
    3. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    4. Sandra Bhatasara, 2017. "Rethinking climate change research in Zimbabwe," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(1), pages 39-52, March.
    5. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    6. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    2. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    3. Cattaneo, Cristina & Peri, Giovanni, 2016. "The migration response to increasing temperatures," Journal of Development Economics, Elsevier, vol. 122(C), pages 127-146.
    4. Colin A. Carter & Gordon C. Rausser & Aaron Smith, 2017. "Commodity Storage and the Market Effects of Biofuel Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(4), pages 1027-1055.
    5. Yoji Kunimitsu & Gen Sakurai & Toshichika Iizumi, 2020. "Systemic Risk in Global Agricultural Markets and Trade Liberalization under Climate Change: Synchronized Crop-Yield Change and Agricultural Price Volatility," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    6. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate Change and Agriculture: Farmer Adaptation to Extreme Heat," Discussion Papers dp18-02, Department of Economics, Simon Fraser University.
    7. S. Seo, 2013. "An essay on the impact of climate change on US agriculture: weather fluctuations, climatic shifts, and adaptation strategies," Climatic Change, Springer, vol. 121(2), pages 115-124, November.
    8. Conte, Marc N. & Kelly, David L., 2018. "An imperfect storm: Fat-tailed tropical cyclone damages, insurance, and climate policy," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 677-706.
    9. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    10. S. Niggol Seo, 2016. "The Micro-behavioral Framework for Estimating Total Damage of Global Warming on Natural Resource Enterprises with Full Adaptations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 328-347, June.
    11. G. Cornelis van Kooten, 2020. "Climate Change and Agriculture," Working Papers 2020-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    12. Howard, Peter & Sterner, Thomas, 2014. "Raising the Temperature on Food Prices: Climate Change, Food Security, and the Social Cost of Carbon," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170648, Agricultural and Applied Economics Association.
    13. Arun S. Malik & Stephen C. Smith, 2012. "Adaptation To Climate Change In Low-Income Countries: Lessons From Current Research And Needs From Future Research," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-22.
    14. Gammans, Matthew & Mérel, Pierre & Paroissien, Emmanuel, 2020. "Reckoning climate change damages along an envelope," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304475, Agricultural and Applied Economics Association.
    15. Peter Maniloff & Sul-Ki Lee, 2015. "The Ethanol Mandate and Corn Price Volatility," Working Papers 2015-01, Colorado School of Mines, Division of Economics and Business.
    16. Steven M. Ramsey & Jason S. Bergtold & Jessica L. Heier Stamm, 2021. "Field‐Level Land‐Use Adaptation to Local Weather Trends," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1314-1341, August.
    17. Henderson, J. Vernon & Storeygard, Adam & Deichmann, Uwe, 2014. "50 years of urbanization in Africa : examining the role of climate change," Policy Research Working Paper Series 6925, The World Bank.
    18. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    19. Ackom, Emmanuel K. & Alemagi, Dieudonne & Ackom, Nana B. & Minang, Peter A. & Tchoundjeu, Zac, 2013. "Modern bioenergy from agricultural and forestry residues in Cameroon: Potential, challenges and the way forward," Energy Policy, Elsevier, vol. 63(C), pages 101-113.
    20. Kousky, Carolyn, 2014. "Informing climate adaptation: A review of the economic costs of natural disasters," Energy Economics, Elsevier, vol. 46(C), pages 576-592.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:3:p:439-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.