IDEAS home Printed from https://ideas.repec.org/a/spr/circec/v2y2022i3d10.1007_s43615-021-00102-4.html
   My bibliography  Save this article

Capture of CO2 and Water While Driving for Use in the Food and Agricultural Systems

Author

Listed:
  • Maria A. Barrufet

    (Texas A&M University)

  • Elena M. Castell-Perez

    (Texas A&M University)

  • Rosana G. Moreira

    (Texas A&M University)

Abstract

This white paper proposes research on the design and evaluation of an integrated system assembled to the vehicle with no energy penalty where a sequence of processes, cooling, heating, mass transfer, and compression, will take place while driving. The increasing demand for fresh produce has led to an expansion of the US urban agriculture industry (greenhouses) which uses carbon dioxide (CO2) enrichment from burning fossil fuels to increase plant productivity and to shorten the plant growth time. The demand for CO2 and water in greenhouses is massive (2.81 kg CO2eq/kg produce, 22 L water/kg produce), and alternate CO2 and water delivery sources are essential to make post-harvest food processing technologies such as dense-phase CO2 pasteurization of beverages more sustainable. Internal combustion engines (ICE) have an average efficiency of about 30%, with 30% of the thermal energy wasted in the exhaust gases. A typical passenger vehicle emits about 4.6 metric tons of CO2 and 21,000 l of water per year into the environment. Although multiple carbon capture technologies exist, the size of these plants is large, their unit operations are fixed, and the use of novel materials is limited. In this white paper, we propose to retrofit the wasted energy in a car’s exhaust to capture, concentrate, store, and deliver liquid CO2 and water for agricultural and food systems. Preliminary thermodynamic and exergy analysis indicates that this is feasible. Specially designed heat and mass transfer units with novel materials and 3D printing technology could be easily deployed and used while driving to mitigate the global warming problem while addressing the needs of agricultural systems.

Suggested Citation

  • Maria A. Barrufet & Elena M. Castell-Perez & Rosana G. Moreira, 2022. "Capture of CO2 and Water While Driving for Use in the Food and Agricultural Systems," Circular Economy and Sustainability, Springer, vol. 2(3), pages 1241-1252, September.
  • Handle: RePEc:spr:circec:v:2:y:2022:i:3:d:10.1007_s43615-021-00102-4
    DOI: 10.1007/s43615-021-00102-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-021-00102-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-021-00102-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarah C. Davis & Derek Kauneckis & Natalie A. Kruse & Kimberley E. Miller & Michael Zimmer & Geoffrey D. Dabelko, 2016. "Closing the loop: integrative systems management of waste in food, energy, and water systems," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 11-24, March.
    2. Ioannis E. Nikolaou & Nikoleta Jones & Alexandros Stefanakis, 2021. "Circular Economy and Sustainability: the Past, the Present and the Future Directions," Circular Economy and Sustainability, Springer, vol. 1(1), pages 1-20, June.
    3. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    4. Maria Wirth & Tamara Vobruba & Marco Hartl & Johannes Kisser, 2021. "Potential Nutrient Conversion Using Nature-Based Solutions in Cities and Utilization Concepts to Create Circular Urban Food Systems," Circular Economy and Sustainability, Springer, vol. 1(3), pages 1147-1164, November.
    5. Lee, Woo-Sung & Kang, Jun-Ho & Lee, Jae-Cheol & Lee, Chang-Ha, 2020. "Enhancement of energy efficiency by exhaust gas recirculation with oxygen-rich combustion in a natural gas combined cycle with a carbon capture process," Energy, Elsevier, vol. 200(C).
    6. Alexandra Jurgilevich & Traci Birge & Johanna Kentala-Lehtonen & Kaisa Korhonen-Kurki & Janna Pietikäinen & Laura Saikku & Hanna Schösler, 2016. "Transition towards Circular Economy in the Food System," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    7. Joerg S. Hofstetter & Valentina Marchi & Joseph Sarkis & Kannan Govindan & Robert Klassen & Aldo R. Ometto & Katharina S. Spraul & Nancy Bocken & Weslynne S. Ashton & Sanjay Sharma & Melanie Jaeger-Er, 2021. "From Sustainable Global Value Chains to Circular Economy—Different Silos, Different Perspectives, but Many Opportunities to Build Bridges," Circular Economy and Sustainability, Springer, vol. 1(1), pages 21-47, June.
    8. Ioannis E. Nikolaou & Nikoleta Jones & Alexandros Stefanakis, 2021. "Correction to: Circular Economy and Sustainability: the Past, the Present and the Future Directions," Circular Economy and Sustainability, Springer, vol. 1(2), pages 783-783, September.
    9. Grunert, Klaus G. & Hieke, Sophie & Wills, Josephine, 2014. "Sustainability labels on food products: Consumer motivation, understanding and use," Food Policy, Elsevier, vol. 44(C), pages 177-189.
    10. Steven Liaros, 2021. "Circular Food Futures: What Will They Look Like?," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1193-1206, December.
    11. Schramski, J.R. & Rutz, Z.J. & Gattie, D.K. & Li, K., 2011. "Trophically balanced sustainable agriculture," Ecological Economics, Elsevier, vol. 72(C), pages 88-96.
    12. V. Venkatramanan & Shachi Shah & Shiv Prasad & Anoop Singh & Ram Prasad, 2021. "Assessment of Bioenergy Generation Potential of Agricultural Crop Residues in India," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1335-1348, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghipour, Amirhossein & Akkalatham, Wareerath & Eaknarajindawat, Natnaporn & Stefanakis, Alexandros I., 2022. "The impact of government policies and steel recycling companies' performance on sustainable management in a circular economy," Resources Policy, Elsevier, vol. 77(C).
    2. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    3. Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Arvind Bhardwaj & Mohamed Rafik Noor Mohamed Qureshi & Nawaf Khan, 2022. "Leveraging the Dynamics of Food Supply Chains towards Avenues of Sustainability," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    4. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    5. Alvarado, Rafael & Murshed, Muntasir & Cifuentes-Faura, Javier & Işık, Cem & Razib Hossain, Mohammad & Tillaguango, Brayan, 2023. "Nexuses between rent of natural resources, economic complexity, and technological innovation: The roles of GDP, human capital and civil liberties," Resources Policy, Elsevier, vol. 85(PA).
    6. Yamna Erraach & Fatma Jaafer & Ivana Radić & Mechthild Donner, 2021. "Sustainability Labels on Olive Oil: A Review on Consumer Attitudes and Behavior," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    7. M. G. E. Velter & V. Bitzer & N. M. P. Bocken, 2022. "A Boundary Tool for Multi-stakeholder Sustainable Business Model Innovation," Circular Economy and Sustainability, Springer, vol. 2(2), pages 401-431, June.
    8. Ariane Voglhuber-Slavinsky & Hartmut Derler & Björn Moller & Ewa Dönitz & Enno Bahrs & Simon Berner, 2021. "Measures to Increase Local Food Supply in the Context of European Framework Scenarios for the Agri-Food Sector," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    9. Hondroyiannis, G. & Sardianou, E. & Nikou, V. & Evangelinos, K. & Nikolaou, I., 2024. "Circular economy and macroeconomic performance: Evidence across 28 European countries," Ecological Economics, Elsevier, vol. 215(C).
    10. Ajay Singh, 2022. "Sustainable Waste Management Through Systems Engineering Models and Remote Sensing Approaches," Circular Economy and Sustainability, Springer, vol. 2(3), pages 1105-1126, September.
    11. Raoul Voss & Roh Pin Lee & Magnus Fröhling, 2022. "Chemical Recycling of Plastic Waste: Comparative Evaluation of Environmental and Economic Performances of Gasification- and Incineration-based Treatment for Lightweight Packaging Waste," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1369-1398, December.
    12. Ionela-Corina Chersan & Mirela Paunescu & Elena-Mirela Nichita & Valentin Florentin Dumitru & Cristina Lidia Manea, 2023. "Circular Economy Practices in the Electrical and Electronic Equipment Sector in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(62), pages 1-80, February.
    13. Yi, Zhang & Zhou, Wenwu & Razzaq, Asif & Yang, Yao, 2023. "Land resource management and sustainable development: Evidence from China's regional data," Resources Policy, Elsevier, vol. 84(C).
    14. Ayad, Fayssal, 2023. "Mapping the path forward: A prospective model of natural resource depletion and sustainable development," Resources Policy, Elsevier, vol. 85(PA).
    15. Sarah N. Gatson & Marissa Cisneros & Robert Brown & Jacqueline A. Aitkenhead-Peterson & Yu Yvette Zhang, 2022. "Urban Networks, Micro-agriculture, and Community Food Security," Circular Economy and Sustainability, Springer, vol. 2(3), pages 1253-1265, September.
    16. Dina Elkayaly & Nahla Hazem & Irene S. Fahim, 2022. "Green and Sustainable Packaging Manufacturing: a Case Study of Sugarcane Bagasse-Based Tableware in Egypt," Circular Economy and Sustainability, Springer, vol. 2(3), pages 829-856, September.
    17. Oluwaseun Samuel Oduniyi, 2022. "Factors Driving the Adoption and Use Extent of Sustainable Land Management Practices in South Africa," Circular Economy and Sustainability, Springer, vol. 2(2), pages 589-608, June.
    18. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    19. Malin Jonell & Beatrice Crona & Kelsey Brown & Patrik Rönnbäck & Max Troell, 2016. "Eco-Labeled Seafood: Determinants for (Blue) Green Consumption," Sustainability, MDPI, vol. 8(9), pages 1-19, September.
    20. Khan, Syed Abdul Rehman & Zaman, Khalid & Zhang, Yu, 2016. "The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 468-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:2:y:2022:i:3:d:10.1007_s43615-021-00102-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.