IDEAS home Printed from https://ideas.repec.org/a/spr/circec/v1y2021i4d10.1007_s43615-021-00089-y.html
   My bibliography  Save this article

Commercialization, Diffusion and Adoption of Bioformulations for Sustainable Disease Management in Indian Arid Agriculture: Prospects and Challenges

Author

Listed:
  • Ritu Mawar

    (ICAR-Central Arid Zone Research Institute)

  • B. L. Manjunatha

    (ICAR-Central Arid Zone Research Institute)

  • Sanjeev Kumar

    (Jawaharlal Nehru Krishi Vishwa Vidyalaya)

Abstract

Trichoderma spp. is one of the most popular genus of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. More than 80 species of Trichoderma are reported in the literature. However T. asperellum, T. harzianum, T. viride, and T. virens are most commonly utilized as biocontrol agents. Studies were initiated to explore the potential of biocontrol agents in order to develop a cost effective and practical management strategy. Analysis of large number of soil samples collected from western parts of the region led to isolation of native biocontrol agents viz., Trichoderma harzianum, Aspergillus versicolor, and Bacillus firmus from different agricultural systems. These biocontrol agents have proved their antagonistic ability in laboratory tests and field trials. In India, two species of Trichoderma i.e., T. viride and T. harzianum are commercially registered for usage against soil borne plant pathogens mostly as a seed treatment or soil application. There are published scientific papers on the efficacy of T. asperellum and T. virens in India for suppressing pathogens but these are not yet registered under Central Insecticide Board and Registration Committee (CIB & RC). This review article focuses on the uses, commercialization and adoption issues of various fungal and bacterial consortium products in sustainable disease management.

Suggested Citation

  • Ritu Mawar & B. L. Manjunatha & Sanjeev Kumar, 2021. "Commercialization, Diffusion and Adoption of Bioformulations for Sustainable Disease Management in Indian Arid Agriculture: Prospects and Challenges," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1367-1385, December.
  • Handle: RePEc:spr:circec:v:1:y:2021:i:4:d:10.1007_s43615-021-00089-y
    DOI: 10.1007/s43615-021-00089-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-021-00089-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-021-00089-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcel G. A. van der Heijden & John N. Klironomos & Margot Ursic & Peter Moutoglis & Ruth Streitwolf-Engel & Thomas Boller & Andres Wiemken & Ian R. Sanders, 1998. "Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity," Nature, Nature, vol. 396(6706), pages 69-72, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura A Schreeg & W John Kress & David L Erickson & Nathan G Swenson, 2010. "Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    2. Matthew Chekwube Enebe & Mariana Erasmus, 2023. "Symbiosis—A Perspective on the Effects of Host Traits and Environmental Parameters in Arbuscular Mycorrhizal Fungal Richness, Colonization and Ecological Functions," Agriculture, MDPI, vol. 13(10), pages 1-28, September.
    3. T E Anne Cotton & Alex J Dumbrell & Thorunn Helgason, 2014. "What Goes in Must Come out: Testing for Biases in Molecular Analysis of Arbuscular Mycorrhizal Fungal Communities," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    4. Vítězslav Vlček & Miroslav Pohanka, 2020. "Glomalin - an interesting protein part of the soil organic matter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(2), pages 67-74.
    5. Agata Klimkowska & Klara Goldstein & Tomasz Wyszomirski & Łukasz Kozub & Mateusz Wilk & Camiel Aggenbach & Jan P Bakker & Heinrich Belting & Boudewijn Beltman & Volker Blüml & Yzaak De Vries & Beate G, 2019. "Are we restoring functional fens? – The outcomes of restoration projects in fens re-analysed with plant functional traits," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-22, April.
    6. Sakai, Kenshi & Brown, Patrick H. & Rosenstock, Todd S. & Upadhyaya, Shrinivasa K. & Hastings, Alan, 2022. "Spatial phase synchronisation of pistachio alternate bearing: Common-noise-induced synchronisation of coupled chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    7. Xi Wei & Wei Song & Ya Shao & Xiangwen Cai, 2022. "Progress of Ecological Restoration Research Based on Bibliometric Analysis," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    8. Gowdy, John & Seidl, Irmi, 2004. "Economic man and selfish genes: the implications of group selection for economic valuation and policy," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 33(3), pages 343-358, July.
    9. Mengdie Feng & Dengyu Zhang & Binghui He & Ke Liang & Peidong Xi & Yunfei Bi & Yingying Huang & Dongxin Liu & Tianyang Li, 2021. "Characteristics of Soil C, N, and P Stoichiometry as Affected by Land Use and Slope Position in the Three Gorges Reservoir Area, Southwest China," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
    10. Isabel Ceballos & Michael Ruiz & Cristhian Fernández & Ricardo Peña & Alia Rodríguez & Ian R Sanders, 2013. "The In Vitro Mass-Produced Model Mycorrhizal Fungus, Rhizophagus irregularis, Significantly Increases Yields of the Globally Important Food Security Crop Cassava," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    11. Guoxi Shi & Yongjun Liu & Lin Mao & Shengjing Jiang & Qi Zhang & Gang Cheng & Lizhe An & Guozhen Du & Huyuan Feng, 2014. "Relative Importance of Deterministic and Stochastic Processes in Driving Arbuscular Mycorrhizal Fungal Assemblage during the Spreading of a Toxic Plant," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    12. Chuanhong Xu & Wenhua Xiang & Mengmeng Gou & Liang Chen & Pifeng Lei & Xi Fang & Xiangwen Deng & Shuai Ouyang, 2018. "Effects of Forest Restoration on Soil Carbon, Nitrogen, Phosphorus, and Their Stoichiometry in Hunan, Southern China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    13. Rosalba O. Fors & Emilia Sorci-Uhmann & Erika S. Santos & Patricia Silva-Flores & Maria Manuela Abreu & Wanda Viegas & Amaia Nogales, 2023. "Influence of Soil Type, Land Use, and Rootstock Genotype on Root-Associated Arbuscular Mycorrhizal Fungi Communities and Their Impact on Grapevine Growth and Nutrition," Agriculture, MDPI, vol. 13(11), pages 1-21, November.
    14. Wang, Weiyan & Guo, Wenjia & Dong, Jiangyao & Zhang, Houping & Liao, Yuncheng & Wen, Xiaoxia, 2024. "Ridge-furrow planting patterns with film mulching improve water use efficiency by enhancing arbuscular mycorrhizal fungi in the rhizosphere and endophyte of summer maize," Agricultural Water Management, Elsevier, vol. 296(C).
    15. Veresoglou, Stavros D. & Halley, John M., 2012. "A model that explains diversity patterns of arbuscular mycorrhizas," Ecological Modelling, Elsevier, vol. 231(C), pages 146-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:1:y:2021:i:4:d:10.1007_s43615-021-00089-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.