IDEAS home Printed from https://ideas.repec.org/a/spr/circec/v1y2021i4d10.1007_s43615-021-00060-x.html
   My bibliography  Save this article

COVID-19 and Future Disease X in Circular Economy Transition: Redesigning Pandemic Preparedness to Prevent a Global Disaster

Author

Listed:
  • Cristina Possas

    (Oswaldo Cruz Foundation)

  • Ernesto T. A. Marques

    (Oswaldo Cruz Foundation
    University of Pittsburgh)

  • João Baptista Risi

    (Oswaldo Cruz Foundation)

  • Akira Homma

    (Oswaldo Cruz Foundation)

Abstract

The COVID-19 pandemic exposed a world surprisingly unprepared to respond to the new epidemiological scenario, even the developed countries, in spite of warnings from scientists since the 1990s. These alerts warned on the risks of an exponential increase in emergence of potentially pandemic zoonotic infectious diseases related to disruptive ecological niches in different regions of the globe, such as H1N1 Influenza, SARS, MERS, Zika, avian flu, swine flu, and Ebola, and also on the risks of a future and more lethal Disease X. We examine this global public health failure in anticipating and responding to the pandemic, stressing the urgent need for an innovative global pandemic preparedness system in the current transition from linear economy to a circular economy. Evidence provided here indicates that this novel preventive-based and resource-saving preparedness system could contribute to reverse the detrimental impacts of the pandemic on global economy and increase its resilience. Individual protection, contact tracing, and lockdown have proved to be just partially effective to respond to the spillover of viral zoonosis into the human population, and for most of these pathogens, vaccines are not yet available. As for COVID-19 vaccines, in spite of the extraordinary investments and unprecedented advances in innovative vaccines in few months, most of these products are expected to be available to more vulnerable developing countries’ populations only by mid-2022. Furthermore, even when these vaccines are available, constraints such as low efficacy, waning immunity, new concerning COVID-19 variants, adverse events, and vaccine hesitancy might possibly restrict their public health impact and could contribute to aggravate the pandemic scenario. Considering these constraints and the severe global economic and social crises resulting from the lack of adequate preparedness and delayed effective response to COVID-19 and possibly to a future Disease X, we propose a pro-active global eco-social pandemic preparedness system. This novel system, based on One Health paradigm and on artificial intelligence and machine learning, is expected to incorporate “spillover” foresight and management into global preparedness and timely response. Designed to mitigate damage from outbreaks and minimize human morbidity and mortality, this approach to pandemic foresight and preparedness will be key to prevent a global disaster.

Suggested Citation

  • Cristina Possas & Ernesto T. A. Marques & João Baptista Risi & Akira Homma, 2021. "COVID-19 and Future Disease X in Circular Economy Transition: Redesigning Pandemic Preparedness to Prevent a Global Disaster," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1463-1478, December.
  • Handle: RePEc:spr:circec:v:1:y:2021:i:4:d:10.1007_s43615-021-00060-x
    DOI: 10.1007/s43615-021-00060-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-021-00060-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-021-00060-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric M. Leroy & Brice Kumulungui & Xavier Pourrut & Pierre Rouquet & Alexandre Hassanin & Philippe Yaba & André Délicat & Janusz T. Paweska & Jean-Paul Gonzalez & Robert Swanepoel, 2005. "Fruit bats as reservoirs of Ebola virus," Nature, Nature, vol. 438(7068), pages 575-576, December.
    2. Lembke B., 1918. "√ a. p," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 111(1), pages 709-712, February.
    3. Jeffery K. Taubenberger & Ann H. Reid & Raina M. Lourens & Ruixue Wang & Guozhong Jin & Thomas G. Fanning, 2005. "Characterization of the 1918 influenza virus polymerase genes," Nature, Nature, vol. 437(7060), pages 889-893, October.
    4. Heidi Ledford, 2020. "What the immune response to the coronavirus says about the prospects for a vaccine," Nature, Nature, vol. 585(7823), pages 20-21, September.
    5. Rory Gibb & David W. Redding & Kai Qing Chin & Christl A. Donnelly & Tim M. Blackburn & Tim Newbold & Kate E. Jones, 2020. "Zoonotic host diversity increases in human-dominated ecosystems," Nature, Nature, vol. 584(7821), pages 398-402, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amber M Smith & Frederick R Adler & Julie L McAuley & Ryan N Gutenkunst & Ruy M Ribeiro & Jonathan A McCullers & Alan S Perelson, 2011. "Effect of 1918 PB1-F2 Expression on Influenza A Virus Infection Kinetics," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-12, February.
    2. Noymer, Andrew, 2009. "Testing the influenza-tuberculosis selective mortality hypothesis with Union Army data," Social Science & Medicine, Elsevier, vol. 68(9), pages 1599-1608, May.
    3. Arnstein Aassve & Guido Alfani & Francesco Gandolfi & Marco Le Moglie, 2021. "Epidemics and trust: The case of the Spanish Flu," Health Economics, John Wiley & Sons, Ltd., vol. 30(4), pages 840-857, April.
    4. Sergei Rogosin & Maryna Dubatovskaya, 2017. "Letnikov vs. Marchaud: A Survey on Two Prominent Constructions of Fractional Derivatives," Mathematics, MDPI, vol. 6(1), pages 1-15, December.
    5. , Aisdl, 2019. "What Citizenship for What Transition?: Contradictions, Ambivalence, and Promises in Post-Socialist Citizenship Education in Vietnam," OSF Preprints jyqp5, Center for Open Science.
    6. Clarke, Matthew, 2011. "Innovative Delivery Mechanisms for Increased Aid Budgets," WIDER Working Paper Series 073, World Institute for Development Economic Research (UNU-WIDER).
    7. Patrick E. Shea, 2016. "Borrowing Trouble: Sovereign Credit, Military Regimes, and Conflict," International Interactions, Taylor & Francis Journals, vol. 42(3), pages 401-428, May.
    8. Valerio Antonelli & Raffaele D'Alessio & Roberto Rossi, 2014. "Budgetary practices in the Ministry of War and the Ministry of Munitions in Italy, 1915-1918," Accounting History Review, Taylor & Francis Journals, vol. 24(2-3), pages 139-160, November.
    9. Karlsson, Martin & Nilsson, Therese & Pichler, Stefan, 2012. "What Doesn't Kill You Makes You Stronger? The Impact of the 1918 Spanish Flu Epidemic on Economic Performance in Sweden," Working Paper Series 911, Research Institute of Industrial Economics.
    10. Roger R. Betancourt, 1969. "R. A. EASTERLIN. Population, Labor Force, and Long Swings in Economic Growth: The American Experience. Pp. xx, 298. New York: National Bureau of Economic Research (Distributed by Columbia University P," The ANNALS of the American Academy of Political and Social Science, , vol. 384(1), pages 183-192, July.
    11. Ilan Noy & Toshihiro Okubo & Eric Strobl, 2023. "The Japanese textile sector and the influenza pandemic of 1918–1920," Journal of Regional Science, Wiley Blackwell, vol. 63(5), pages 1192-1227, November.
    12. Singh, Nirupama & Kumari, Babita & Sharma, Shailja & Chaudhary, Surbhi & Upadhyay, Sumant & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2014. "Electrodeposition and sol–gel derived nanocrystalline N–ZnO thin films for photoelectrochemical splitting of water: Exploring the role of microstructure," Renewable Energy, Elsevier, vol. 69(C), pages 242-252.
    13. Rathberger Andreas, 2014. "The “Piano Virtuosos” of International Politics: Informal Diplomacy in the late nineteenth and early twentieth Century Ottoman Empire," New Global Studies, De Gruyter, vol. 8(1), pages 9-29, March.
    14. Seán Kenny & Jason Lennard & Kevin Hjortshøj O’Rourke, 2020. "An annual index of Irish industrial production, 1800-1921," Oxford Economic and Social History Working Papers _185, University of Oxford, Department of Economics.
    15. Jyotirmoy Banerjee, 1995. "Indo-Russian Relations: The Cryogenic Rocket Deal ∗," Jadavpur Journal of International Relations, , vol. 1(1), pages 121-129, June.
    16. Karlsson, Martin & Nilsson, Therese & Pichler, Stefan, 2014. "The impact of the 1918 Spanish flu epidemic on economic performance in Sweden," Journal of Health Economics, Elsevier, vol. 36(C), pages 1-19.
    17. Kublik Walther, André, 2005. "Information and communication technology (ICT) for development of small and medium-sized exporters in Latin America: Colombia," Documentos de Proyectos 3677, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Radu Săgeată & Bianca Mitrică & Irena Mocanu, 2021. "Centralized Industrialization in the Memory of Places. Case Studies of Romanian Cities," Societies, MDPI, vol. 11(4), pages 1-16, October.
    19. Markevich, Andrei & Harrison, Mark, 2011. "Great War, Civil War, and Recovery: Russia's National Income, 1913 to 1928," The Journal of Economic History, Cambridge University Press, vol. 71(3), pages 672-703, September.
    20. Victoria Y. Fan & Dean T. Jamison & Lawrence H. Summers, 2016. "The Inclusive Cost of Pandemic Influenza Risk," NBER Working Papers 22137, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:1:y:2021:i:4:d:10.1007_s43615-021-00060-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.