IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v29y2021i2d10.1007_s10100-018-0569-0.html
   My bibliography  Save this article

Complexity indices for the multidimensional knapsack problem

Author

Listed:
  • Ivan Derpich

    (Universidad de Santiago de Chile)

  • Carlos Herrera

    (Universidad de Concepción)

  • Felipe Sepúlveda

    (Universidad de Concepción)

  • Hugo Ubilla

    (Universidad de Concepción)

Abstract

In this article, the concept of conditioning in integer programming is extended to the concept of a complexity index. A complexity index is a measure through which the execution time of an exact algorithm can be predicted. We consider the multidimensional knapsack problem with instances taken from the OR-library and MIPLIB. The complexity indices we developed correspond to the eigenvalues of a Dikin matrix placed in the center of a polyhedron defined by the constraints of the problem relaxed from its binary variable formulation. The lower and higher eigenvalues, as well as their ratio, which we have defined as the slenderness, are used as complexity indices. The experiments performed show a good linear correlation between these indices and a low execution time of the Branch and Bound algorithm using the standard version of CPLEX® 12.2. The correlation coefficient obtained ranges between 39 and 60% for the various data regressions, which proves a medium to strong correlation.

Suggested Citation

  • Ivan Derpich & Carlos Herrera & Felipe Sepúlveda & Hugo Ubilla, 2021. "Complexity indices for the multidimensional knapsack problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 589-609, June.
  • Handle: RePEc:spr:cejnor:v:29:y:2021:i:2:d:10.1007_s10100-018-0569-0
    DOI: 10.1007/s10100-018-0569-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-018-0569-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-018-0569-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Magazine, M. J. & Oguz, Osman, 1984. "A heuristic algorithm for the multidimensional zero-one knapsack problem," European Journal of Operational Research, Elsevier, vol. 16(3), pages 319-326, June.
    2. De Reyck, Bert & Herroelen, Willy, 1996. "On the use of the complexity index as a measure of complexity in activity networks," European Journal of Operational Research, Elsevier, vol. 91(2), pages 347-366, June.
    3. Wilbaut, Christophe & Salhi, Saïd & Hanafi, Saïd, 2009. "An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(2), pages 339-348, December.
    4. Shizuo Senju & Yoshiaki Toyoda, 1968. "An Approach to Linear Programming with 0-1 Variables," Management Science, INFORMS, vol. 15(4), pages 196-207, December.
    5. A Volgenant & I Y Zwiers, 2007. "Partial enumeration in heuristics for some combinatorial optimization problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 73-79, January.
    6. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    7. Robert M. Freund & Jorge R. Vera, 2003. "On the Complexity of Computing Estimates of Condition Measures of a Conic Linear System," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 625-648, November.
    8. R Mansini & M G Speranza, 2002. "A multidimensional knapsack model for asset-backed securitization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(8), pages 822-832, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Derpich & Juan Valencia & Mario Lopez, 2023. "The Set Covering and Other Problems: An Empiric Complexity Analysis Using the Minimum Ellipsoidal Width," Mathematics, MDPI, vol. 11(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabah Bushaj & İ. Esra Büyüktahtakın, 2024. "A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack," Journal of Global Optimization, Springer, vol. 89(3), pages 655-685, July.
    2. Lin, Feng-Tse & Yao, Jing-Shing, 2001. "Using fuzzy numbers in knapsack problems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 158-176, November.
    3. Yalçın Akçay & Haijun Li & Susan Xu, 2007. "Greedy algorithm for the general multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 150(1), pages 17-29, March.
    4. Bahram Alidaee & Vijay P. Ramalingam & Haibo Wang & Bryan Kethley, 2018. "Computational experiment of critical event tabu search for the general integer multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 269(1), pages 3-19, October.
    5. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    6. Renata Mansini & Roberto Zanotti, 2020. "A Core-Based Exact Algorithm for the Multidimensional Multiple Choice Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1061-1079, October.
    7. Setzer, Thomas & Blanc, Sebastian M., 2020. "Empirical orthogonal constraint generation for Multidimensional 0/1 Knapsack Problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 58-70.
    8. Dimitris Bertsimas & Ramazan Demir, 2002. "An Approximate Dynamic Programming Approach to Multidimensional Knapsack Problems," Management Science, INFORMS, vol. 48(4), pages 550-565, April.
    9. Yalçin Akçay & Susan H. Xu, 2004. "Joint Inventory Replenishment and Component Allocation Optimization in an Assemble-to-Order System," Management Science, INFORMS, vol. 50(1), pages 99-116, January.
    10. Lamanna, Leonardo & Mansini, Renata & Zanotti, Roberto, 2022. "A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 53-65.
    11. M. Vanhoucke & J. Coelho & L. V. Tavares & D. Debels, 2004. "On The Morphological Structure Of A Network," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/272, Ghent University, Faculty of Economics and Business Administration.
    12. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    13. Lin, Feng-Tse, 2008. "Solving the knapsack problem with imprecise weight coefficients using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 185(1), pages 133-145, February.
    14. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    15. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    16. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    17. Louis Anthony (Tony) Cox, Jr., 2012. "Evaluating and Improving Risk Formulas for Allocating Limited Budgets to Expensive Risk‐Reduction Opportunities," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1244-1252, July.
    18. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    19. Kurt Jörnsten & Andreas Klose, 2016. "An improved Lagrangian relaxation and dual ascent approach to facility location problems," Computational Management Science, Springer, vol. 13(3), pages 317-348, July.
    20. Edward Y H Lin & Chung-Min Wu, 2004. "The multiple-choice multi-period knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 187-197, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:29:y:2021:i:2:d:10.1007_s10100-018-0569-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.