Optimal unions of hidden classes
Author
Abstract
Suggested Citation
DOI: 10.1007/s10100-017-0496-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Z. Volkovich & D. Toledano-Kitai & G.-W. Weber, 2013. "Self-learning K-means clustering: a global optimization approach," Journal of Global Optimization, Springer, vol. 56(2), pages 219-232, June.
- Weber, Gerhard-Wilhelm & Defterli, Ozlem & Alparslan Gök, SIrma Zeynep & Kropat, Erik, 2011. "Modeling, inference and optimization of regulatory networks based on time series data," European Journal of Operational Research, Elsevier, vol. 211(1), pages 1-14, May.
- Santi, Éverton & Aloise, Daniel & Blanchard, Simon J., 2016. "A model for clustering data from heterogeneous dissimilarities," European Journal of Operational Research, Elsevier, vol. 253(3), pages 659-672.
- Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
- Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marijana Zekić-Sušac & Marinela Knežević & Rudolf Scitovski, 2021. "Modeling the cost of energy in public sector buildings by linear regression and deep learning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 307-322, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Yi-Ting & Sun, Edward W. & Lin, Yi-Bing, 2020. "Merging anomalous data usage in wireless mobile telecommunications: Business analytics with a strategy-focused data-driven approach for sustainability," European Journal of Operational Research, Elsevier, vol. 281(3), pages 687-705.
- Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
- Trindade, Graça & Dias, José G. & Ambrósio, Jorge, 2017. "Extracting clusters from aggregate panel data: A market segmentation study," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 277-288.
- Karmitsa, Napsu & Bagirov, Adil M. & Taheri, Sona, 2017. "New diagonal bundle method for clustering problems in large data sets," European Journal of Operational Research, Elsevier, vol. 263(2), pages 367-379.
- Bariş Keçeci & Yusuf Tansel Iç & Ergün Eraslan, 2019. "Development of a Spreadsheet DSS for Multi-Response Taguchi Parameter Optimization Problems Using the TOPSIS, VIKOR, and GRA Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1501-1531, September.
- Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
- Chaudhuri, Kausik & Sen, Rituparna & Tan, Zheng, 2018. "Testing extreme dependence in financial time series," Economic Modelling, Elsevier, vol. 73(C), pages 378-394.
- Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
- Furio Urso & Antonino Abbruzzo & Marcello Chiodi & Maria Francesca Cracolici, 2024. "Model selection for mixture hidden Markov models: an application to clickstream data," Statistical Papers, Springer, vol. 65(9), pages 5797-5834, December.
- Fulvia Pennoni & Francesco Bartolucci & Gianfranco Forte & Ferdinando Ametrano, 2022.
"Exploring the dependencies among main cryptocurrency log‐returns: A hidden Markov model,"
Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(1), February.
- Pennoni, Fulvia & Bartolucci, Francesco & Forte, Gianfranco & Ametrano, Ferdinando, 2020. "Exploring the dependencies among main cryptocurrency log-returns: A hidden Markov model," MPRA Paper 106150, University Library of Munich, Germany.
- Phoebe Koundouri & Georgios I. Papayiannis & Electra V. Petracou & Athanasios N. Yannacopoulos, 2023.
"Consensus group decision making under model uncertainty with a view towards environmental policy making,"
Papers
2312.00436, arXiv.org.
- Koundouri, Phoebe & Papayiannis, Georgios I. & Petracou, Electra V. & Yannacopoulos, Athanasios N., 2023. "Consensus group decision making under model uncertainty with a view towards environmental policy making," MPRA Paper 122006, University Library of Munich, Germany.
- Phoebe Koundouri & Georgios I. Papayiannis & Electra Petracou & Athanasios Yannacopoulos, 2023. "Consensus group decision making under model uncertainty with a view towards environmental policy making," DEOS Working Papers 2305, Athens University of Economics and Business.
- Rota Bulò, Samuel & Pelillo, Marcello, 2017. "Dominant-set clustering: A review," European Journal of Operational Research, Elsevier, vol. 262(1), pages 1-13.
- Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2021. "Option pricing with conditional GARCH models," European Journal of Operational Research, Elsevier, vol. 289(1), pages 350-363.
- Donglian Ma & Hisashi Tanizaki, 2022. "Intraday patterns of price clustering in Bitcoin," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
- M. T. Agieva & A. V. Korolev & G. A. Ougolnitsky, 2020. "Modeling and Simulation of Impact and Control in Social Networks with Application to Marketing," Mathematics, MDPI, vol. 8(9), pages 1-28, September.
- Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
- Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.
- Sergey Grachev & Petr Skobelev & Igor Mayorov & Elena Simonova, 2020. "Adaptive Clustering through Multi-Agent Technology: Development and Perspectives," Mathematics, MDPI, vol. 8(10), pages 1-17, September.
- Soheyl Khalilpourazari & Hossein Hashemi Doulabi, 2022. "Designing a hybrid reinforcement learning based algorithm with application in prediction of the COVID-19 pandemic in Quebec," Annals of Operations Research, Springer, vol. 312(2), pages 1261-1305, May.
- Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
More about this item
Keywords
Classification; Cluster analysis; Binary programming; Convex programming; Cluster union; Crisis prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:27:y:2019:i:1:d:10.1007_s10100-017-0496-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.