IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v22y2014i1p187-209.html
   My bibliography  Save this article

Fuzzy mixture two warehouse inventory model involving fuzzy random variable lead time demand and fuzzy total demand

Author

Listed:
  • Debdulal Panda
  • Mahendra Rong
  • Manoranjan Maiti

Abstract

This paper considers a two-warehouse fuzzy-stochastic mixture inventory model involving variable lead time with backorders fully backlogged. The model is considered for two cases—without and with budget constraint. Here, lead-time demand is considered as a fuzzy random variable and the total cost is obtained in the fuzzy sense. The total demand is again represented by a triangular fuzzy number and the fuzzy total cost is derived. By using the centroid method of defuzzification, the total cost is estimated. For the case with fuzzy-stochastic budget constraint, surprise function is used to convert the constrained problem to a corresponding unconstrained problem in pessimistic sense. The crisp optimization problem is solved using Generalized Reduced Gradient method. The optimal solutions for order quantity and lead time are found in both cases for the models with fuzzy-stochastic/stochastic lead time and the corresponding minimum value of the total cost in all cases are obtained. Numerical examples are provided to illustrate the models and results in both cases are compared. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Debdulal Panda & Mahendra Rong & Manoranjan Maiti, 2014. "Fuzzy mixture two warehouse inventory model involving fuzzy random variable lead time demand and fuzzy total demand," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(1), pages 187-209, March.
  • Handle: RePEc:spr:cejnor:v:22:y:2014:i:1:p:187-209
    DOI: 10.1007/s10100-013-0284-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-013-0284-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-013-0284-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Liang-Yuh & Chang, Hung-Chi, 2002. "A minimax distribution free procedure for mixed inventory models involving variable lead time with fuzzy lost sales," International Journal of Production Economics, Elsevier, vol. 76(1), pages 1-12, March.
    2. Maiti, Manas Kumar & Maiti, Manoranjan, 2007. "Two-storage inventory model with lot-size dependent fuzzy lead-time under possibility constraints via genetic algorithm," European Journal of Operational Research, Elsevier, vol. 179(2), pages 352-371, June.
    3. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    4. Mahendra Rong & Manoranjan Maiti, 2010. "A two-warehouse inventory model with stochastic demand, controllable lead time and fuzzy present value: a technique to deal with arbitrary fuzzy number," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 8(2), pages 208-229.
    5. Sarma, K. V. S., 1987. "A deterministic order level inventory model for deteriorating items with two storage facilities," European Journal of Operational Research, Elsevier, vol. 29(1), pages 70-73, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majumder, P. & Bera, U.K. & Maiti, M., 2016. "An EPQ model for two-warehouse in unremitting release pattern with two-level trade credit period concerning both supplier and retailer," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 430-458.
    2. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    3. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    4. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    5. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    6. Hermann Held, 2019. "Cost Risk Analysis: Dynamically Consistent Decision-Making under Climate Targets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 247-261, January.
    7. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    8. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    9. Liao, Jui-Jung & Chung, Kun-Jen & Huang, Kuo-Nan, 2013. "A deterministic inventory model for deteriorating items with two warehouses and trade credit in a supply chain system," International Journal of Production Economics, Elsevier, vol. 146(2), pages 557-565.
    10. Odetayo, Babatunde & MacCormack, John & Rosehart, William D. & Zareipour, Hamidreza, 2017. "A sequential planning approach for Distributed generation and natural gas networks," Energy, Elsevier, vol. 127(C), pages 428-437.
    11. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    12. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    13. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    14. Giada Spaccapanico Proietti & Mariagiulia Matteucci & Stefania Mignani & Bernard P. Veldkamp, 2024. "Chance-Constrained Automated Test Assembly," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 92-120, February.
    15. Jana, R.K. & Sharma, Dinesh K. & Chakraborty, B., 2016. "A hybrid probabilistic fuzzy goal programming approach for agricultural decision-making," International Journal of Production Economics, Elsevier, vol. 173(C), pages 134-141.
    16. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    18. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    19. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    20. Xu, M. & Zhuan, X., 2013. "Optimal planning for wind power capacity in an electric power system," Renewable Energy, Elsevier, vol. 53(C), pages 280-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:22:y:2014:i:1:p:187-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.