IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v19y2011i4p615-633.html
   My bibliography  Save this article

A new probabilistic approach to the path criticality in stochastic PERT

Author

Listed:
  • Davaadorjin Monhor

Abstract

The notion of critical path is a key issue in the temporal analysis of project scheduling in deterministic setting. The very essence of the CPM consists in identifying the critical path, i.e., the longest path in a project network, because this path conveys information on how long it should take to complete the project to the project manager. The problem how can a stochastic counterpart of the deterministic critical path be defined is an important question in stochastic PERT. However, in the literature of stochastic PERT this question has so far almost been ignored, and the research into the random nature of a project duration has mainly been concentrated on the completion time in stochastic PERT in which any concrete special path is not specified. In the present paper we attempt to take first steps to fill this gap. We first developed a probabilistic background theory for univariate and bivariate marginal distributions of path durations of stochastic PERT whose joint path durations are modelled by multivariate normal distribution. Then, a new probabilistic approach to the comparison of path durations is introduced, and based on this comparison we define the concept of probabilistically critical path as a stochastic counterpart of the deterministic critical path. Also, an illustrative simple example of PCP and numerical results on the established probability bounds are presented. Copyright Springer-Verlag 2011

Suggested Citation

  • Davaadorjin Monhor, 2011. "A new probabilistic approach to the path criticality in stochastic PERT," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 615-633, December.
  • Handle: RePEc:spr:cejnor:v:19:y:2011:i:4:p:615-633
    DOI: 10.1007/s10100-010-0151-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-010-0151-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-010-0151-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bajis Dodin, 1985. "Bounding the Project Completion Time Distribution in PERT Networks," Operations Research, INFORMS, vol. 33(4), pages 862-881, August.
    2. A. Charnes & W. W. Cooper & G. L. Thompson, 1964. "Critical Path Analyses Via Chance Constrained and Stochastic Programming," Operations Research, INFORMS, vol. 12(3), pages 460-470, June.
    3. J. J. Martin, 1965. "Distribution of the Time Through a Directed, Acyclic Network," Operations Research, INFORMS, vol. 13(1), pages 46-66, February.
    4. Elmaghraby, Salah E., 2000. "On criticality and sensitivity in activity networks," European Journal of Operational Research, Elsevier, vol. 127(2), pages 220-238, December.
    5. V. G. Kulkarni & V. G. Adlakha, 1986. "Markov and Markov-Regenerative pert Networks," Operations Research, INFORMS, vol. 34(5), pages 769-781, October.
    6. Schmidt, Craig W. & Grossmann, Ignacio E., 2000. "The exact overall time distribution of a project with uncertain task durations," European Journal of Operational Research, Elsevier, vol. 126(3), pages 614-636, November.
    7. John R. Birge & Marilyn J. Maddox, 1995. "Bounds on Expected Project Tardiness," Operations Research, INFORMS, vol. 43(5), pages 838-850, October.
    8. Fatemi Ghomi, S. M. T. & Hashemin, S. S., 1999. "A new analytical algorithm and generation of Gaussian quadrature formula for stochastic network," European Journal of Operational Research, Elsevier, vol. 114(3), pages 610-625, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    2. Yuge Dong & Qingtong Xie & Shuguang Ding & Liangguo He & Hu Wang, 2022. "The evaluation of bivariate normal probabilities for failure of parallel systems," Statistical Papers, Springer, vol. 63(5), pages 1585-1614, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azaron, Amir & Fatemi Ghomi, S.M.T., 2008. "Lower bound for the mean project completion time in dynamic PERT networks," European Journal of Operational Research, Elsevier, vol. 186(1), pages 120-127, April.
    2. Azaron, Amir & Fynes, Brian & Modarres, Mohammad, 2011. "Due date assignment in repetitive projects," International Journal of Production Economics, Elsevier, vol. 129(1), pages 79-85, January.
    3. Vaseghi, Forough & Martens, Annelies & Vanhoucke, Mario, 2024. "Analysis of the impact of corrective actions for stochastic project networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 503-518.
    4. Amir Azaron & Hideki Katagiri & Masatoshi Sakawa, 2007. "Time-cost trade-off via optimal control theory in Markov PERT networks," Annals of Operations Research, Springer, vol. 150(1), pages 47-64, March.
    5. Azaron, Amir & Katagiri, Hideki & Sakawa, Masatoshi & Kato, Kosuke & Memariani, Azizollah, 2006. "A multi-objective resource allocation problem in PERT networks," European Journal of Operational Research, Elsevier, vol. 172(3), pages 838-854, August.
    6. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Longest path analysis in networks of queues: Dynamic scheduling problems," European Journal of Operational Research, Elsevier, vol. 174(1), pages 132-149, October.
    7. Gary Mitchell, 2010. "On Calculating Activity Slack in Stochastic Project Networks," American Journal of Economics and Business Administration, Science Publications, vol. 2(1), pages 78-85, March.
    8. Mahtab Afsari & Hesam Javadi Vasigh, 2016. "A Mathematical Modeling for Delivery Time in Dynamic PERT Networks," Modern Applied Science, Canadian Center of Science and Education, vol. 10(3), pages 214-214, March.
    9. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Modelling complex assemblies as a queueing network for lead time control," European Journal of Operational Research, Elsevier, vol. 174(1), pages 150-168, October.
    10. Masoud Arjmand & Amir Abbas Najafi & Majid Ebrahimzadeh, 2020. "Evolutionary algorithms for multi-objective stochastic resource availability cost problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 935-985, September.
    11. Madadi, M. & Iranmanesh, H., 2012. "A management oriented approach to reduce a project duration and its risk (variability)," European Journal of Operational Research, Elsevier, vol. 219(3), pages 751-761.
    12. Williams, Terry, 1999. "Towards realism in network simulation," Omega, Elsevier, vol. 27(3), pages 305-314, June.
    13. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    14. R. Alan Bowman, 2003. "Sensitivity curves for effective project management," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(5), pages 481-497, August.
    15. Vanhoucke, Mario, 2010. "Using activity sensitivity and network topology information to monitor project time performance," Omega, Elsevier, vol. 38(5), pages 359-370, October.
    16. Tetsuo Iida, 2000. "Computing bounds on project duration distributions for stochastic PERT networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 559-580, October.
    17. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2021. "Using Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 288(3), pages 736-752.
    18. Xuan Vinh Doan & Karthik Natarajan, 2012. "On the Complexity of Nonoverlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems," Operations Research, INFORMS, vol. 60(1), pages 138-149, February.
    19. Elmaghraby, Salah E., 2000. "On criticality and sensitivity in activity networks," European Journal of Operational Research, Elsevier, vol. 127(2), pages 220-238, December.
    20. Lei Liu & Marcello Urgo, 2024. "Robust scheduling in a two-machine re-entrant flow shop to minimise the value-at-risk of the makespan: branch-and-bound and heuristic algorithms based on Markovian activity networks and phase-type dis," Annals of Operations Research, Springer, vol. 338(1), pages 741-764, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:19:y:2011:i:4:p:615-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.