IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v19y2011i4p547-569.html
   My bibliography  Save this article

A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem

Author

Listed:
  • F. Jolai
  • J. Razmi
  • N. Rostami

Abstract

Integrated production–distribution planning is one of the most important issues in supply chain management (SCM). We consider a supply chain (SC) network to consist of a manufacturer, with multiple plants, products, distribution centers (DCs), retailers and customers. A multi-objective linear programming problem for integrating production–distribution, which considers various simultaneously conflicting objectives, is developed. The decision maker’s imprecise aspiration levels of goals are incorporated into the model using a fuzzy goal programming approach. Due to complexity of the considered problem we propose three meta-heuristics to tackle the problem. A simple genetic algorithm and a particle swarm optimization (PSO) algorithm with a new fitness function, and an improved hybrid genetic algorithm are developed. In order to show the efficiency of the proposed methods, two classes of problems are considered and their instances are solved using all methods. The obtained results show that the improved hybrid genetic algorithm gives us the best solutions in a reasonable computational time. Copyright Springer-Verlag 2011

Suggested Citation

  • F. Jolai & J. Razmi & N. Rostami, 2011. "A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 547-569, December.
  • Handle: RePEc:spr:cejnor:v:19:y:2011:i:4:p:547-569
    DOI: 10.1007/s10100-010-0144-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-010-0144-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-010-0144-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrovic, Dobrila & Roy, Rajat & Petrovic, Radivoj, 1999. "Supply chain modelling using fuzzy sets," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 443-453, March.
    2. Erenguc, S. Selcuk & Simpson, N. C. & Vakharia, Asoo J., 1999. "Integrated production/distribution planning in supply chains: An invited review," European Journal of Operational Research, Elsevier, vol. 115(2), pages 219-236, June.
    3. Chen, Chen-Tung & Lin, Ching-Torng & Huang, Sue-Fn, 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management," International Journal of Production Economics, Elsevier, vol. 102(2), pages 289-301, August.
    4. Chang, Sheng-Lin & Wang, Reay-Chen & Wang, Shih-Yuan, 2006. "Applying fuzzy linguistic quantifier to select supply chain partners at different phases of product life cycle," International Journal of Production Economics, Elsevier, vol. 100(2), pages 348-359, April.
    5. Wang, Reay-Chen & Liang, Tien-Fu, 2005. "Applying possibilistic linear programming to aggregate production planning," International Journal of Production Economics, Elsevier, vol. 98(3), pages 328-341, December.
    6. Ebadian, M. & Rabbani, M. & Jolai, F. & Torabi, S.A. & Tavakkoli-Moghaddam, R., 2008. "A new decision-making structure for the order entry stage in make-to-order environments," International Journal of Production Economics, Elsevier, vol. 111(2), pages 351-367, February.
    7. Sakawa, Masatoshi & Nishizaki, Ichiro & Uemura, Yoshio, 2001. "Fuzzy programming and profit and cost allocation for a production and transportation problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 1-15, May.
    8. Samir Elhedhli & Jean-Louis Goffin, 2005. "Efficient Production-Distribution System Design," Management Science, INFORMS, vol. 51(7), pages 1151-1164, July.
    9. Selim, Hasan & Araz, Ceyhun & Ozkarahan, Irem, 2008. "Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 396-419, May.
    10. Abd El-Wahed, Waiel F. & Lee, Sang M., 2006. "Interactive fuzzy goal programming for multi-objective transportation problems," Omega, Elsevier, vol. 34(2), pages 158-166, April.
    11. Keskin, Burcu B. & Uster, Halit, 2007. "Meta-heuristic approaches with memory and evolution for a multi-product production/distribution system design problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 663-682, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Azimian & Belaid Aouni, 2017. "Supply chain management through the stochastic goal programming model," Annals of Operations Research, Springer, vol. 251(1), pages 351-365, April.
    2. Wafa Ben Yahia & Omar Ayadi & Faouzi Masmoudi, 2017. "A fuzzy-based negotiation approach for collaborative planning in manufacturing supply chains," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1987-2006, December.
    3. Turan Paksoy & Eren Özceylan & Gerhard-Wilhelm Weber, 2013. "Profit oriented supply chain network optimization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 455-478, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    2. Peidro, David & Mula, Josefa & Jiménez, Mariano & del Mar Botella, Ma, 2010. "A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 65-80, August.
    3. Mula, Josefa & Peidro, David & Díaz-Madroñero, Manuel & Vicens, Eduardo, 2010. "Mathematical programming models for supply chain production and transport planning," European Journal of Operational Research, Elsevier, vol. 204(3), pages 377-390, August.
    4. Bottani, Eleonora & Rizzi, Antonio, 2008. "An adapted multi-criteria approach to suppliers and products selection--An application oriented to lead-time reduction," International Journal of Production Economics, Elsevier, vol. 111(2), pages 763-781, February.
    5. Wu, Tao & Xiao, Fan & Zhang, Canrong & Zhang, Defu & Liang, Zhe, 2019. "Regression and extrapolation guided optimization for production–distribution with ship–buy–exchange options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 15-37.
    6. Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
    7. Wu, Chong & Barnes, David, 2010. "Formulating partner selection criteria for agile supply chains: A Dempster-Shafer belief acceptability optimisation approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 284-293, June.
    8. Lokesh Nagar & Pankaj Dutta & Karuna Jain, 2014. "An integrated supply chain model for new products with imprecise production and supply under scenario dependent fuzzy random demand," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(5), pages 873-887, May.
    9. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    10. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    11. Saen, Reza Farzipoor, 2007. "Suppliers selection in the presence of both cardinal and ordinal data," European Journal of Operational Research, Elsevier, vol. 183(2), pages 741-747, December.
    12. Roozbeh Nia, Ali & Hemmati Far, Mohammad & Akhavan Niaki, Seyed Taghi, 2014. "A fuzzy vendor managed inventory of multi-item economic order quantity model under shortage: An ant colony optimization algorithm," International Journal of Production Economics, Elsevier, vol. 155(C), pages 259-271.
    13. Kabak, Özgür & Ülengin, Füsun, 2011. "Possibilistic linear-programming approach for supply chain networking decisions," European Journal of Operational Research, Elsevier, vol. 209(3), pages 253-264, March.
    14. Aurelija Burinskienė, 2021. "Designing a Multi-Stage Transport System Serving e-Commerce Activity," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    15. Wong, Bo K. & Lai, Vincent S., 2011. "A survey of the application of fuzzy set theory in production and operations management: 1998-2009," International Journal of Production Economics, Elsevier, vol. 129(1), pages 157-168, January.
    16. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    17. Srikant Gupta & Irfan Ali & Aquil Ahmed, 2018. "Multi-objective bi-level supply chain network order allocation problem under fuzziness," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 721-748, November.
    18. Yang Yu & Ray Qing Cao & Dara Schniederjans, 2017. "Cloud computing and its impact on service level: a multi-agent simulation model," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4341-4353, August.
    19. Masoud Esmaeilikia & Behnam Fahimnia & Joeseph Sarkis & Kannan Govindan & Arun Kumar & John Mo, 2016. "Tactical supply chain planning models with inherent flexibility: definition and review," Annals of Operations Research, Springer, vol. 244(2), pages 407-427, September.
    20. Jaroslava Smolová & Martin Pech, 2011. "Fuzzy approach to supply chain management," Economics Working Papers 2011-01, University of South Bohemia in Ceske Budejovice, Faculty of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:19:y:2011:i:4:p:547-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.