IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v17y2009i4p381-396.html
   My bibliography  Save this article

Optimal production stopping time for perishable products with ramp-type quadratic demand dependent production and setup cost

Author

Listed:
  • S. Panda
  • S. Saha
  • M. Basu

Abstract

A single item economic production quantity (EPQ) model is discussed to analyse the behaviour of the inventory level after it’s introduction to the market. It is assumed that demand is time dependent accelerated growth-effect of accelerated growth-steady type. Unlike the conventional EPQ models, which are restricted to general production cycle over the finite or infinite time horizon, we consider the production sale scenario of the very first production cycle for newly introduced perishable product. Shortage is not allowed. Set up cost of an order cycle depends on the total amount of inventory produced. The finite production rate is proportional to demand rate. Optimal production stopping time is determined to maximize total unit profit of the system. A numerical example is presented to illustrate the development of the model. Sensitivity analysis of the model is carried out. Copyright Springer-Verlag 2009

Suggested Citation

  • S. Panda & S. Saha & M. Basu, 2009. "Optimal production stopping time for perishable products with ramp-type quadratic demand dependent production and setup cost," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 381-396, December.
  • Handle: RePEc:spr:cejnor:v:17:y:2009:i:4:p:381-396
    DOI: 10.1007/s10100-009-0098-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-009-0098-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-009-0098-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    2. Manna, S.K. & Chaudhuri, K.S., 2006. "An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages," European Journal of Operational Research, Elsevier, vol. 171(2), pages 557-566, June.
    3. S. Panda & S. Saha & M. Basu, 2007. "An Eoq Model With Generalized Ramp-Type Demand And Weibull Distribution Deterioration," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 93-109.
    4. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Zhuo & Aqlan, Faisal & Gao, Kuo, 2017. "Optimizing multi-echelon inventory with three types of demand in supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 141-177.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    2. V. Radhamani & B. Sivakumar & G. Arivarignan, 2022. "A Comparative Study on Replenishment Policies for Perishable Inventory System with Service Facility and Multiple Server Vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 229-265, March.
    3. Ketzenberg, M.E. & Bloemhof-Ruwaard, J.M., 2009. "The Value of RFID Technology Enabled Information to Manage Perishables," ERIM Report Series Research in Management ERS-2009-020-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    5. Ketzenberg, Michael & Oliva, Rogelio & Wang, Yimin & Webster, Scott, 2023. "Retailer inventory data sharing in a fresh product supply chain," European Journal of Operational Research, Elsevier, vol. 307(2), pages 680-693.
    6. Janssen, Larissa & Diabat, Ali & Sauer, Jürgen & Herrmann, Frank, 2018. "A stochastic micro-periodic age-based inventory replenishment policy for perishable goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 445-465.
    7. Li‐Ming Chen & Amar Sapra, 2013. "Joint inventory and pricing decisions for perishable products with two‐period lifetime," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(5), pages 343-366, August.
    8. Sudip Adak & G. S. Mahapatra, 2022. "Effect of reliability on multi-item inventory system with shortages and partial backlog incorporating time dependent demand and deterioration," Annals of Operations Research, Springer, vol. 315(2), pages 1551-1571, August.
    9. Omar Ahumada & J. Villalobos, 2011. "A tactical model for planning the production and distribution of fresh produce," Annals of Operations Research, Springer, vol. 190(1), pages 339-358, October.
    10. R Bai & E K Burke & G Kendall, 2008. "Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1387-1397, October.
    11. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    12. J-M Chen & L-T Chen, 2004. "Pricing and lot-sizing for a deteriorating item in a periodic review inventory system with shortages," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 892-901, August.
    13. Wang, X. & Li, D. & O'brien, C. & Li, Y., 2010. "A production planning model to reduce risk and improve operations management," International Journal of Production Economics, Elsevier, vol. 124(2), pages 463-474, April.
    14. Stratos Ioannidis & Oualid Jouini & Angelos Economopoulos & Vassilis Kouikoglou, 2013. "Control policies for single-stage production systems with perishable inventory and customer impatience," Annals of Operations Research, Springer, vol. 209(1), pages 115-138, October.
    15. S. Panda & S. Saha & M. Basu, 2009. "An EOQ model for perishable products with discounted selling price and stock dependent demand," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(1), pages 31-53, March.
    16. Yadavalli, V.S.S. & Sivakumar, B. & Arivarignan, G., 2008. "Inventory system with renewal demands at service facilities," International Journal of Production Economics, Elsevier, vol. 114(1), pages 252-264, July.
    17. Guowei Liu & Jianxiong Zhang & Wansheng Tang, 2015. "Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand," Annals of Operations Research, Springer, vol. 226(1), pages 397-416, March.
    18. I. Padmavathi & A. Shophia Lawrence & B. Sivakumar, 2016. "A finite-source inventory system with postponed demands and modified M vacation policy," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 41-62, March.
    19. Ting, Pin-Shou, 2015. "Comments on the EOQ model for deteriorating items with conditional trade credit linked to order quantity in the supply chain management," European Journal of Operational Research, Elsevier, vol. 246(1), pages 108-118.
    20. Feng, Lin & Wang, Wan-Chih & Teng, Jinn-Tsair & Cárdenas-Barrón, Leopoldo Eduardo, 2022. "Pricing and lot-sizing decision for fresh goods when demand depends on unit price, displaying stocks and product age under generalized payments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 940-952.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:17:y:2009:i:4:p:381-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.