IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v5y2020i2d10.1007_s41247-020-00076-1.html
   My bibliography  Save this article

The Resource-Limited Plateau in Global Conventional Oil Production: Analysis and Consequences

Author

Listed:
  • R W. Bentley

    (Petroleum Analysis Centre)

  • M. Mushalik
  • J. Wang

    (China University of Petroleum
    China University of Petroleum)

Abstract

This paper describes the mechanism that drives the peak of conventional oil in a region, and shows that identifying this peak is assisted by access to oil industry backdated proved-plus-probable oil discovery data. The paper then uses estimates of the ultimately recoverable resource (URR) of conventional oil to show that the plateau in the global production of this oil since 2005 has been resource-limited, at least for oil prices well in excess of $100/bbl. Since this date the world’s marginal barrels have been of non-conventional oils and ‘other liquids’. The economic and political consequences of this plateau are then examined. These include the steep rise in oil price after 2004 (in significant part reflecting the increased production cost of the marginal barrels); this contributing to the 2008/9 global recession; the lower EROI ratios and higher CO2 emissions of the marginal barrels; and the growth of US tight oil. The post-2004 oil price rise is set in the context of oil price changes since 1923. This shows that the price of oil over this period has been set primarily by increases in the marginal production cost of oil, overlain by relatively short-term price excursions due to supply/demand imbalances. Finally we note that the global economy as currently configured requires increasing supply of inexpensive oil if the economic expectations of the world’s rapidly growing population are to be met. But supply of low-cost oil is in decline, and the world must use less oil to meet climate change goals. Resolving this conundrum looks to be difficult. Annex 1 sets out definitions and data. Annex 2 summarises the current wide range of views and forecasts of global ‘all-liquids’ supply.

Suggested Citation

  • R W. Bentley & M. Mushalik & J. Wang, 2020. "The Resource-Limited Plateau in Global Conventional Oil Production: Analysis and Consequences," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-22, June.
  • Handle: RePEc:spr:bioerq:v:5:y:2020:i:2:d:10.1007_s41247-020-00076-1
    DOI: 10.1007/s41247-020-00076-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-020-00076-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-020-00076-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert U. Ayres & Benjamin Warr, 2009. "The Economic Growth Engine," Books, Edward Elgar Publishing, number 13324.
    2. Christiane Baumeister & Lutz Kilian, 2016. "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 139-160, Winter.
    3. Benes, Jaromir & Chauvet, Marcelle & Kamenik, Ondra & Kumhof, Michael & Laxton, Douglas & Mursula, Susanna & Selody, Jack, 2015. "The future of oil: Geology versus technology," International Journal of Forecasting, Elsevier, vol. 31(1), pages 207-221.
    4. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    5. Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
    6. John Baffes & M. Ayhan Kose & Franziska Ohnsorge & Marc Stocker, 2015. "The Great Plunge in Oil Prices: Causes, Consequences, and Policy Responses," Koç University-TUSIAD Economic Research Forum Working Papers 1504, Koc University-TUSIAD Economic Research Forum.
    7. James D. Hamilton, 2011. "Historical Oil Shocks," NBER Working Papers 16790, National Bureau of Economic Research, Inc.
    8. Michael Dittmar, 2017. "A Regional Oil Extraction and Consumption Model. Part II: Predicting the Declines in Regional Oil Consumption," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-19, December.
    9. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    10. Keen, Steve & Ayres, Robert U. & Standish, Russell, 2019. "A Note on the Role of Energy in Production," Ecological Economics, Elsevier, vol. 157(C), pages 40-46.
    11. Michael Jefferson, 2019. "Why Do So Many Economists Underplay the Psychological and Biophysical Aspects of Life on Earth?," Biophysical Economics and Resource Quality, Springer, vol. 4(4), pages 1-10, December.
    12. Robert. K. Kaufmann & Caitlin Connelly, 2020. "Oil price regimes and their role in price diversions from market fundamentals," Nature Energy, Nature, vol. 5(2), pages 141-149, February.
    13. Michael Dittmar, 2016. "Regional Oil Extraction and Consumption: A simple production model for the next 35 years Part I," Papers 1601.07716, arXiv.org.
    14. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
    15. Michael Carbajales-Dale, 2019. "When is EROI Not EROI?," Biophysical Economics and Resource Quality, Springer, vol. 4(4), pages 1-4, December.
    16. Lewis C. King & Jeroen C. J. M. van den Bergh, 2018. "Implications of net energy-return-on-investment for a low-carbon energy transition," Nature Energy, Nature, vol. 3(4), pages 334-340, April.
    17. Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.
    18. Bentley, R.W. & Mannan, S.A. & Wheeler, S.J., 2007. "Assessing the date of the global oil peak: The need to use 2P reserves," Energy Policy, Elsevier, vol. 35(12), pages 6364-6382, December.
    19. Michael Dittmar, 2016. "Regional Oil Extraction and Consumption: A Simple Production Model for the Next 35 years Part I," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    2. van den Bijgaart, Inge & Rodriguez, Mauricio, 2023. "Closing wells: Fossil development and abandonment in the energy transition," Resource and Energy Economics, Elsevier, vol. 74(C).
    3. Douglas B. Reynolds, 2024. "U.S. shale oil production and trend estimation: Forecasting a Hubbert model," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 468-487, January.
    4. Samuel Alexander & Joshua Floyd, 2020. "The Political Economy of Deep Decarbonization: Tradable Energy Quotas for Energy Descent Futures," Energies, MDPI, vol. 13(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    2. Bentley, Roger & Bentley, Yongmei, 2015. "Explaining the price of oil 1971–2014 : The need to use reliable data on oil discovery and to account for ‘mid-point’ peak," Energy Policy, Elsevier, vol. 86(C), pages 880-890.
    3. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    4. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    5. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    6. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    7. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    8. Honorata Nyga-Łukaszewska & Kentaka Aruga, 2020. "Energy Prices and COVID-Immunity: The Case of Crude Oil and Natural Gas Prices in the US and Japan," Energies, MDPI, vol. 13(23), pages 1-17, November.
    9. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    10. Fantazzini, Dean & Höök, Mikael & Angelantoni, André, 2011. "Global oil risks in the early 21st century," Energy Policy, Elsevier, vol. 39(12), pages 7865-7873.
    11. Ansari, Dawud, 2017. "OPEC, Saudi Arabia, and the shale revolution: Insights from equilibrium modelling and oil politics," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 111, pages 166-178.
    12. Guillouzouic-Le Corff, Arthur, 2018. "Did oil prices trigger an innovation burst in biofuels?," Energy Economics, Elsevier, vol. 75(C), pages 547-559.
    13. Charfeddine, Lanouar & Barkat, Karim, 2020. "Short- and long-run asymmetric effect of oil prices and oil and gas revenues on the real GDP and economic diversification in oil-dependent economy," Energy Economics, Elsevier, vol. 86(C).
    14. Kevin Pahud & Greg de Temmerman, 2022. "Overview of the EROI, a tool to measure energy availability through the energy transition," Post-Print hal-03780085, HAL.
    15. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "U.S. shale oil production and WTI prices behaviour," Energy, Elsevier, vol. 141(C), pages 12-19.
    16. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    17. Pham T. T. Trinh & Bui T. T. My, 2023. "The impact of world oil price shocks on macroeconomic variables in Vietnam: the transmission through domestic oil price," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 37(1), pages 67-87, May.
    18. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    19. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:5:y:2020:i:2:d:10.1007_s41247-020-00076-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.