Predictive End-to-End Enterprise Process Network Monitoring
Author
Abstract
Suggested Citation
DOI: 10.1007/s12599-022-00778-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nijat Mehdiyev & Joerg Evermann & Peter Fettke, 2020. "A Novel Business Process Prediction Model Using a Deep Learning Method," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(2), pages 143-157, April.
- Michael zur Muehlen & Robert Shapiro, 2015. "Business Process Analytics," International Handbooks on Information Systems, in: Jan vom Brocke & Michael Rosemann (ed.), Handbook on Business Process Management 2, edition 2, pages 243-263, Springer.
- Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
- Julia Eggers & Andreas Hein & Markus Böhm & Helmut Krcmar, 2021. "No Longer Out of Sight, No Longer Out of Mind? How Organizations Engage with Process Mining-Induced Transparency to Achieve Increased Process Awareness," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(5), pages 491-510, October.
- Rafael Lorenz & Julian Senoner & Wilfried Sihn & Torbjørn Netland, 2021. "Using process mining to improve productivity in make-to-stock manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4869-4880, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stefan Feuerriegel & Mateusz Dolata & Gerhard Schwabe, 2020. "Fair AI," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 379-384, August.
- Philippe Jardin, 2023. "Designing topological data to forecast bankruptcy using convolutional neural networks," Annals of Operations Research, Springer, vol. 325(2), pages 1291-1332, June.
- Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
- Theo Berger & Jana Koubová, 2024. "Forecasting Bitcoin returns: Econometric time series analysis vs. machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2904-2916, November.
- Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
- Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
- Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
- Si, Guojin & Xia, Tangbin & Gebraeel, Nagi & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2022. "A reliability-and-cost-based framework to optimize maintenance planning and diverse-skilled technician routing for geographically distributed systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
- Zhai, Yue & Hua, Guowei & Cheng, Meng & Cheng, T.C.E., 2023. "Production lead-time hedging and order allocation in an MTO supply chain," European Journal of Operational Research, Elsevier, vol. 311(3), pages 887-905.
- Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
- repec:iim:iimawp:14638 is not listed on IDEAS
- Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
- Lorenzo Federico & Ayoub Mounim & Pierpaolo D’Urso & Livia De Giovanni, 2024. "Complex networks and deep learning for copper flow across countries," Annals of Operations Research, Springer, vol. 339(1), pages 937-963, August.
- Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
- Thomas Grisold & Christian Janiesch & Maximilian Röglinger & Moe Thandar Wynn, 2024. "Managing Dynamics in and Around Business Processes," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 66(5), pages 533-540, October.
- Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
- Vairetti, Carla & Aránguiz, Ignacio & Maldonado, Sebastián & Karmy, Juan Pablo & Leal, Alonso, 2024. "Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1108-1118.
- Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
More about this item
Keywords
Predictive process analytics; Predictive process monitoring; Deep learning; Machine learning; Neural network; Business process anagement; Process mining;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:65:y:2023:i:1:d:10.1007_s12599-022-00778-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.