IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v5y2011i1p39-58.html
   My bibliography  Save this article

Probleme des Qualitätsvergleichs von Kreditausfallprognosen

Author

Listed:
  • Walter Krämer
  • Michael Bücker

Abstract

The statistical quality of credit default forecasts can be measured and compared in different ways. This article surveys the various approaches that have been suggested in the literature and discusses their respective properties. For the particular case of credit scoring in the retail business, it is shown that some quality criteria are more useful than others. In particular, various measures that are popular in, e.g. meteorology, such as the Brier score have to be applied with caution. Copyright Springer 2011

Suggested Citation

  • Walter Krämer & Michael Bücker, 2011. "Probleme des Qualitätsvergleichs von Kreditausfallprognosen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 5(1), pages 39-58, March.
  • Handle: RePEc:spr:astaws:v:5:y:2011:i:1:p:39-58
    DOI: 10.1007/s11943-011-0096-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11943-011-0096-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11943-011-0096-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter Krämer, 2006. "Evaluating probability forecasts in terms of refinement and strictly proper scoring rules," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 223-226.
    2. Eric Rosenberg & Alan Gleit, 1994. "Quantitative Methods in Credit Management: A Survey," Operations Research, INFORMS, vol. 42(4), pages 589-613, August.
    3. Menkhoff Lukas & Schmeling Maik & Schmidt Ulrich, 2010. "Are All Professional Investors Sophisticated?," German Economic Review, De Gruyter, vol. 11(4), pages 418-440, December.
    4. D J Hand, 2005. "Good practice in retail credit scorecard assessment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1109-1117, September.
    5. R. Winkler & Javier Muñoz & José Cervera & José Bernardo & Gail Blattenberger & Joseph Kadane & Dennis Lindley & Allan Murphy & Robert Oliver & David Ríos-Insua, 1996. "Scoring rules and the evaluation of probabilities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-60, June.
    6. repec:bla:germec:v:11:y:2010:i::p:418-440 is not listed on IDEAS
    7. Stein, Roger M., 2005. "The relationship between default prediction and lending profits: Integrating ROC analysis and loan pricing," Journal of Banking & Finance, Elsevier, vol. 29(5), pages 1213-1236, May.
    8. Blochlinger, Andreas & Leippold, Markus, 2006. "Economic benefit of powerful credit scoring," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 851-873, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    2. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    3. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    4. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    5. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    6. Li, Ming-Yuan Leon & Miu, Peter, 2010. "A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 818-833, September.
    7. Krämer, Walter & Neumärker, Simon, 2016. "Comparing the accuracy of default predictions in the rating industry for different sets of obligors," Economics Letters, Elsevier, vol. 145(C), pages 48-51.
    8. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    9. Medema, Lydian & Koning, Ruud H. & Lensink, Robert, 2009. "A practical approach to validating a PD model," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 701-708, April.
    10. Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
    11. Kajal Lahiri & Liu Yang, 2018. "Confidence Bands for ROC Curves With Serially Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 115-130, January.
    12. Neuberg Richard & Hannah Lauren, 2017. "Loan pricing under estimation risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 69-87, June.
    13. Kim Kaivanto, 2014. "Visceral emotions, within-community communication, and (ill-judged) endorsement of financial propositions," Working Papers 69123498, Lancaster University Management School, Economics Department.
    14. Janet Mitchell & Patrick Van Roy, 2007. "Failure prediction models : performance, disagreements, and internal rating systems," Working Paper Research 123, National Bank of Belgium.
    15. Krämer, Walter & Neumärker, Simon, 2019. "Skill Scores and modified Lorenz domination in default forecasts," Economics Letters, Elsevier, vol. 181(C), pages 61-64.
    16. Krämer, Walter, 2004. "Qualitätsvergleiche bei Kreditausfallprognosen," Technical Reports 2004,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    18. Jessen, Cathrine & Lando, David, 2015. "Robustness of distance-to-default," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 493-505.
    19. Rais Ahmad Itoo & A. Selvarasu, 2017. "Loan products and Credit Scoring Methods by Commercial Banks," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 7(1), pages 1297-1297.
    20. Jayasekera, Ranadeva, 2018. "Prediction of company failure: Past, present and promising directions for the future," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 196-208.

    More about this item

    Keywords

    Kreditausfälle; Wahrscheinlichkeitsprognosen; Scorekarten; C53; G24; Credit default; Probability forecasts; Scorecards;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:5:y:2011:i:1:p:39-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.