IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v56y2005i9d10.1057_palgrave.jors.2601932.html
   My bibliography  Save this article

Good practice in retail credit scorecard assessment

Author

Listed:
  • D J Hand

    (Imperial College)

Abstract

In retail banking, predictive statistical models called ‘scorecards’ are used to assign customers to classes, and hence to appropriate actions or interventions. Such assignments are made on the basis of whether a customer's predicted score is above or below a given threshold. The predictive power of such scorecards gradually deteriorates over time, so that performance needs to be monitored. Common performance measures used in the retail banking sector include the Gini coefficient, the Kolmogorov–Smirnov statistic, the mean difference, and the information value. However, all of these measures use irrelevant information about the magnitude of scores, and fail to use crucial information relating to numbers misclassified. The result is that such measures can sometimes be seriously misleading, resulting in poor quality decisions being made, and mistaken actions being taken. The weaknesses of these measures are illustrated. Performance measures not subject to these risks are defined, and simple numerical illustrations are given.

Suggested Citation

  • D J Hand, 2005. "Good practice in retail credit scorecard assessment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1109-1117, September.
  • Handle: RePEc:pal:jorsoc:v:56:y:2005:i:9:d:10.1057_palgrave.jors.2601932
    DOI: 10.1057/palgrave.jors.2601932
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601932
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    2. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    3. D J Hand & M G Kelly, 2001. "Lookahead scorecards for new fixed term credit products," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(9), pages 989-996, September.
    4. L C Thomas & J Banasik & J N Crook, 2001. "Recalibrating scorecards," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(9), pages 981-988, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Xiefang & Fang, Fang, 2024. "Variable selection of Kolmogorov-Smirnov maximization with a penalized surrogate loss," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    2. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    3. T Bellotti & J Crook, 2009. "Credit scoring with macroeconomic variables using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1699-1707, December.
    4. Anna Stelzer, 2019. "Predicting credit default probabilities using machine learning techniques in the face of unequal class distributions," Papers 1907.12996, arXiv.org.
    5. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    6. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    7. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    8. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    9. D J Hand & C Whitrow & N M Adams & P Juszczak & D Weston, 2008. "Performance criteria for plastic card fraud detection tools," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 956-962, July.
    10. Runchi Zhang & Zhiyi Qiu, 2020. "Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-35, June.
    11. Verbraken, Thomas & Bravo, Cristián & Weber, Richard & Baesens, Bart, 2014. "Development and application of consumer credit scoring models using profit-based classification measures," European Journal of Operational Research, Elsevier, vol. 238(2), pages 505-513.
    12. Fang, Fang & Chen, Yuanyuan, 2019. "A new approach for credit scoring by directly maximizing the Kolmogorov–Smirnov statistic," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 180-194.
    13. Walter Krämer & Michael Bücker, 2011. "Probleme des Qualitätsvergleichs von Kreditausfallprognosen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 5(1), pages 39-58, March.
    14. Finlay, Steven, 2010. "Credit scoring for profitability objectives," European Journal of Operational Research, Elsevier, vol. 202(2), pages 528-537, April.
    15. A. C. Antonakis & M. E. Sfakianakis, 2009. "Assessing naive Bayes as a method for screening credit applicants," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(5), pages 537-545.
    16. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
    17. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    18. David J. Hand, 2008. "Comment," Biometrics, The International Biometric Society, vol. 64(1), pages 259-259, March.
    19. Chen, Liao & Ma, Shoufeng & Li, Changlin & Yang, Yuance & Wei, Wei & Cui, Runbang, 2024. "A spatial–temporal graph-based AI model for truck loan default prediction using large-scale GPS trajectory data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    20. Yusuf Priyo Anggodo & Abba Suganda Girsang, 2024. "A Novel Modified Binning and Logistics Regression to Handle Shifting in Credit Scoring," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2371-2403, June.
    21. Manojit Chattopadhyay & Subrata Kumar Mitra, 2017. "Applicability and effectiveness of classifications models for achieving the twin objectives of growth and outreach of microfinance institutions," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 451-474, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G Andreeva, 2006. "European generic scoring models using survival analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1180-1187, October.
    2. L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
    3. Robert Till & David Hand, 2003. "Behavioural models of credit card usage," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1201-1220.
    4. Dinh, K. & Kleimeier, S., 2006. "Credit scoring for Vietnam's retail banking market : implementation and implications for transactional versus relationship lending," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    5. Thomas Wainwright, 2011. "Elite Knowledges: Framing Risk and the Geographies of Credit," Environment and Planning A, , vol. 43(3), pages 650-665, March.
    6. K Rajaratnam & P Beling & G Overstreet, 2010. "Scoring decisions in the context of economic uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 421-429, March.
    7. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    8. Dinh, Thi Huyen Thanh & Kleimeier, Stefanie, 2007. "A credit scoring model for Vietnam's retail banking market," International Review of Financial Analysis, Elsevier, vol. 16(5), pages 471-495.
    9. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    10. Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Nydia M. Reyes, 2013. "A Social Approach to Microfinance Credit Scoring," Working Papers CEB 13-013, ULB -- Universite Libre de Bruxelles.
    11. B. P. S. Murthi & Marina Girju & Erin Steffes, 2019. "The effect of promotional interest rates on customer borrowing and payment behavior in the credit card industry," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(1), pages 11-20, June.
    12. Chernonog, Tatyana & Avinadav, Tal, 2016. "A two-state partially observable Markov decision process with three actionsAuthor-Name: Ben-Zvi, Tal," European Journal of Operational Research, Elsevier, vol. 254(3), pages 957-967.
    13. Mestiri, Sami & Farhat, Abdejelil, 2018. "Credit Risk Prediction based on Bayesian estimation of logistic regression model with random effects," MPRA Paper 119960, University Library of Munich, Germany.
    14. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    15. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    16. Lobna Abid & Afif Masmoudi & Sonia Zouari-Ghorbel, 2018. "The Consumer Loan’s Payment Default Predictive Model: an Application of the Logistic Regression and the Discriminant Analysis in a Tunisian Commercial Bank," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 948-962, September.
    17. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    18. Dawn Burton, 2012. "Credit Scoring, Risk, and Consumer Lendingscapes in Emerging Markets," Environment and Planning A, , vol. 44(1), pages 111-124, January.
    19. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    20. Linhui Wang & Jianping Zhu & Chenlu Zheng & Zhiyuan Zhang, 2024. "Incorporating Digital Footprints into Credit-Scoring Models through Model Averaging," Mathematics, MDPI, vol. 12(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:56:y:2005:i:9:d:10.1057_palgrave.jors.2601932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.