IDEAS home Printed from https://ideas.repec.org/a/spr/apjors/v7y2023i2d10.1007_s41685-022-00270-7.html
   My bibliography  Save this article

Community perceptions of the impacts of desertification as related to adaptive capacity in drylands of South Punjab, Pakistan

Author

Listed:
  • Nausheen Mazhar

    (Lahore College for Women University)

  • Safdar Ali Shirazi

    (University of the Punjab)

Abstract

Anthropogenic activities and climatic variations continue to aggravate desertification in the drylands of the world. This study is aimed to explore the perceptions of local residents in the drylands of Bahawalpur, Rahim Yar Khan and Rajanpur districts, lying in the drylands of South Punjab, regarding the impacts of desertification on humans, finances, animals and the environment of the study area. In addition, we explored possible relations between these impacts and adaptive capacity of the local population. Primary data was collected from 399 respondents in a survey conducted during Feb–July 2019 using disproportionate stratified random sampling techniques. The Rajanpur District suffered the most in terms of human and environmental impacts, while Rahim Yar Khan experienced the lowest financial and human impacts, but most severe livestock impacts due to desertification. We also found that increases in water scarcity of surface water bodies and decline in groundwater levels, along with an increase in unemployment and delayed repayment of loans, all led to reduced adaptive capacity of the respondents. These results are helpful for policy makers to plan desertification control policies, that are region specific and focus on the main impacts being faced by each district.

Suggested Citation

  • Nausheen Mazhar & Safdar Ali Shirazi, 2023. "Community perceptions of the impacts of desertification as related to adaptive capacity in drylands of South Punjab, Pakistan," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 549-568, June.
  • Handle: RePEc:spr:apjors:v:7:y:2023:i:2:d:10.1007_s41685-022-00270-7
    DOI: 10.1007/s41685-022-00270-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41685-022-00270-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41685-022-00270-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:eme:ijlma0:ijlma-10-2016-0085 is not listed on IDEAS
    2. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    3. Xuan Wei & Lihua Zhou & Guojing Yang & Ya Wang & Yong Chen, 2020. "Assessing the Effects of Desertification Control Projects from the Farmers’ Perspective: A Case Study of Yanchi County, Northern China," IJERPH, MDPI, vol. 17(3), pages 1-15, February.
    4. Gerald Forkuor & Ozias K L Hounkpatin & Gerhard Welp & Michael Thiel, 2017. "High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    2. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    3. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    4. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    5. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    6. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    7. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    8. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    9. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    10. Ahmad, Tanveer & Chen, Huanxin & Huang, Ronggeng & Yabin, Guo & Wang, Jiangyu & Shair, Jan & Azeem Akram, Hafiz Muhammad & Hassnain Mohsan, Syed Agha & Kazim, Muhammad, 2018. "Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment," Energy, Elsevier, vol. 158(C), pages 17-32.
    11. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    12. Kingsley JOHN & Isong Abraham Isong & Ndiye Michael Kebonye & Esther Okon Ayito & Prince Chapman Agyeman & Sunday Marcus Afu, 2020. "Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil," Land, MDPI, vol. 9(12), pages 1-20, December.
    13. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    14. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    15. Afroz, Zakia & Urmee, Tania & Shafiullah, G.M. & Higgins, Gary, 2018. "Real-time prediction model for indoor temperature in a commercial building," Applied Energy, Elsevier, vol. 231(C), pages 29-53.
    16. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    17. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    18. Li, Xinyue & Chen, Shuqin & Li, Hongliang & Lou, Yunxiao & Li, Jiahe, 2023. "A behavior-orientated prediction method for short-term energy consumption of air-conditioning systems in buildings blocks," Energy, Elsevier, vol. 263(PD).
    19. Kangbéni Dimobe & Jean Léandre N’djoré Kouakou & Jérôme E. Tondoh & Benewinde J.-B. Zoungrana & Gerald Forkuor & Korotimi Ouédraogo, 2018. "Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas," Land, MDPI, vol. 7(4), pages 1-21, October.
    20. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:apjors:v:7:y:2023:i:2:d:10.1007_s41685-022-00270-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.