IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v8y2021i3d10.1007_s40745-020-00272-2.html
   My bibliography  Save this article

Predicting Indian Stock Market Using the Psycho-Linguistic Features of Financial News

Author

Listed:
  • B. Shravan Kumar

    (Institute for Development and Research in Banking Technology (IDRBT)
    University of Hyderabad)

  • Vadlamani Ravi

    (Institute for Development and Research in Banking Technology (IDRBT))

  • Rishabh Miglani

    (Indian Institute of Technology Kharagpur)

Abstract

Financial forecasting using news articles is an emerging field. In this paper, we proposed hybrid intelligent models for stock market prediction using the psycholinguistic variables (LIWC and TAALES) extracted from news articles as predictor variables. For prediction purpose, we employed various intelligent techniques such as Multilayer Perceptron, Group Method of Data Handling (GMDH), General Regression Neural Network (GRNN), Random Forest, Quantile Regression Random Forest, Classification and regression tree and Support Vector Regression. We experimented on the data of 12 companies’ stocks, which are listed in Bombay Stock Exchange. We employed Chi squared and maximum relevance and minimum redundancy feature selection techniques on the psycho-linguistic features obtained from the news articles etc. After extensive experimentation, using Diebold-Mariano test, we conclude that GMDH and GRNN are statistically the best techniques in that order with respect to the MAPE and NRMSE values.

Suggested Citation

  • B. Shravan Kumar & Vadlamani Ravi & Rishabh Miglani, 2021. "Predicting Indian Stock Market Using the Psycho-Linguistic Features of Financial News," Annals of Data Science, Springer, vol. 8(3), pages 517-558, September.
  • Handle: RePEc:spr:aodasc:v:8:y:2021:i:3:d:10.1007_s40745-020-00272-2
    DOI: 10.1007/s40745-020-00272-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00272-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00272-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    2. Yong Shi & Zhiguang Shan & Jianping Li & Yufei Fang, 2017. "How China Deals with Big Data," Annals of Data Science, Springer, vol. 4(4), pages 433-440, December.
    3. Chatrath, Arjun & Miao, Hong & Ramchander, Sanjay & Villupuram, Sriram, 2014. "Currency jumps, cojumps and the role of macro news," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 42-62.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    6. Martin D. D. Evans & Richard K. Lyons, 2017. "How is Macro News Transmitted to Exchange Rates?," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 14, pages 547-596, World Scientific Publishing Co. Pte. Ltd..
    7. Flores, Benito E, 1986. "A pragmatic view of accuracy measurement in forecasting," Omega, Elsevier, vol. 14(2), pages 93-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuancheng Si & Saralees Nadarajah, 2023. "A Statistical Analysis of Chinese Stock Indices Returns From Approach of Parametric Distributions Fitting," Annals of Data Science, Springer, vol. 10(1), pages 73-88, February.
    2. Deeksha Chandola & Akshit Mehta & Shikha Singh & Vinay Anand Tikkiwal & Himanshu Agrawal, 2023. "Forecasting Directional Movement of Stock Prices using Deep Learning," Annals of Data Science, Springer, vol. 10(5), pages 1361-1378, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. Shravan Kumar & Vadlamani Ravi & Rishabh Miglani, 2019. "Predicting Indian stock market using the psycho-linguistic features of financial news," Papers 1911.06193, arXiv.org.
    2. El Ouadghiri, Imane & Uctum, Remzi, 2016. "Jumps in equilibrium prices and asymmetric news in foreign exchange markets," Economic Modelling, Elsevier, vol. 54(C), pages 218-234.
    3. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    4. Lucchetti, Riccardo & Palomba, Giulio, 2009. "Nonlinear adjustment in US bond yields: An empirical model with conditional heteroskedasticity," Economic Modelling, Elsevier, vol. 26(3), pages 659-667, May.
    5. D Büttner & B. Hayo, 2012. "EMU-related news and financial markets in the Czech Republic, Hungary and Poland," Applied Economics, Taylor & Francis Journals, vol. 44(31), pages 4037-4053, November.
    6. Onour , Ibrahim A., 2021. "Modeling and assessing systematic risk in stock markets in major oil exporting countries," Economic Consultant, Roman I. Ostapenko, vol. 35(3), pages 18-29.
    7. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    8. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    9. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    10. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    11. Cerrato, Mario & Kim, Hyunsok & MacDonald, Ronald, 2015. "Microstructure order flow: statistical and economic evaluation of nonlinear forecasts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 40-52.
    12. Stéphane Yen & Ming-Hsiang Chen, 2010. "Open interest, volume, and volatility: evidence from Taiwan futures markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 34(2), pages 113-141, April.
    13. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    14. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    15. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    16. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    17. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    18. Ibrahim Onour, "undated". "Exploring Stability of Systematic Risk: Sectoral Portfolio Analysis," API-Working Paper Series 1002, Arab Planning Institute - Kuwait, Information Center.
    19. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    20. Cheung, Yin-Wong & Fatum, Rasmus & Yamamoto, Yohei, 2019. "The exchange rate effects of macro news after the global Financial Crisis," Journal of International Money and Finance, Elsevier, vol. 95(C), pages 424-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:8:y:2021:i:3:d:10.1007_s40745-020-00272-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.