IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v7y2020i4d10.1007_s40745-020-00310-z.html
   My bibliography  Save this article

Bayesian Estimation of Transmuted Pareto Distribution for Complete and Censored Data

Author

Listed:
  • Muhammad Aslam

    (Riphah International University)

  • Rahila Yousaf

    (Riphah International University)

  • Sajid Ali

    (Quaid-i-Azam University)

Abstract

Transmuted distributions belong to the skewed family of distributions which are more flexible and versatile than the simple probability distributions. The focus of this article is the Bayesian estimation of three-parameter Transmuted Pareto distribution. In particular, we assumed noninformative and informative priors to obtain the posterior distributions. Bayesian point estimators and the associated precision measures are investigated under squared error loss function, precautionary loss function, and quadratic loss function. In addition to this, the Bayesian credible intervals are also computed under different priors. A simulation study using a Markov Chain Monte Carlo algorithm assuming uncensored and censored data in terms of different sample sizes and censoring rates is also a part of this study. The performance of Bayesian point estimators is assessed in term of posterior risks. Finally, two real life data sets of cardiovascular disease patients and of exceedances of Wheaton River flood are discussed in this article.

Suggested Citation

  • Muhammad Aslam & Rahila Yousaf & Sajid Ali, 2020. "Bayesian Estimation of Transmuted Pareto Distribution for Complete and Censored Data," Annals of Data Science, Springer, vol. 7(4), pages 663-695, December.
  • Handle: RePEc:spr:aodasc:v:7:y:2020:i:4:d:10.1007_s40745-020-00310-z
    DOI: 10.1007/s40745-020-00310-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00310-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00310-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong Shi, 2001. "Multiple Criteria and Multiple Constraint Levels Linear Programming:Concepts, Techniques and Applications," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4000, February.
    2. Farhad Yousaf & Sajid Ali & Ismail Shah, 2019. "Statistical Inference for the Chen Distribution Based on Upper Record Values," Annals of Data Science, Springer, vol. 6(4), pages 831-851, December.
    3. Md. Mahabubur Rahman & Bander Al-Zahrani & Muhammad Qaiser Shahbaz, 2020. "Cubic Transmuted Pareto Distribution," Annals of Data Science, Springer, vol. 7(1), pages 91-108, March.
    4. repec:dau:papers:123456789/1908 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indrajeet Kumar & Shishir Kumar Jha & Kapil Kumar, 2023. "On Some Estimation Methods for the Inverse Pareto Distribution," Annals of Data Science, Springer, vol. 10(4), pages 1035-1068, August.
    2. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Shi & Yi Peng & Gang Kou & Zhengxin Chen, 2005. "Classifying Credit Card Accounts For Business Intelligence And Decision Making: A Multiple-Criteria Quadratic Programming Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 581-599.
    2. K.-J. Tseng & Y.-H. Liu & Jow-Fei Ho, 2008. "An Efficient Algorithm For Solving A Quadratic Programming Model With Application In Credit Card Holders' Behavior," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 421-430.
    3. Po-Lung Yu & Yen-Chu Chen, 2012. "Dynamic multiple criteria decision making in changeable spaces: from habitual domains to innovation dynamics," Annals of Operations Research, Springer, vol. 197(1), pages 201-220, August.
    4. Indrajeet Kumar & Shishir Kumar Jha & Kapil Kumar, 2023. "On Some Estimation Methods for the Inverse Pareto Distribution," Annals of Data Science, Springer, vol. 10(4), pages 1035-1068, August.
    5. Chaofang Hu & Shaoyuan Li, 2006. "Enhanced Interactive Satisfying Optimization Approach To Multiple Objective Optimization With Preemptive Priorities," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 47-63.
    6. Jianping Li & Xiaolei Sun & Fei Wang & Dengsheng Wu, 2015. "Risk integration and optimization of oil-importing maritime system: a multi-objective programming approach," Annals of Operations Research, Springer, vol. 234(1), pages 57-76, November.
    7. Xi Zhao & Yong Shi & Jongwon Lee & Heung Kee Kim & Heeseok Lee, 2014. "Customer Churn Prediction Based on Feature Clustering and Nonparallel Support Vector Machine," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 13(05), pages 1013-1027.
    8. Shahzad Hussain & Sajjad Haider Bhatti & Tanvir Ahmad & Muhammad Ahmed Shehzad, 2021. "Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1693-1708, June.
    9. Wikil Kwak & Yong Shi & Gang Kou, 2012. "Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach," Review of Quantitative Finance and Accounting, Springer, vol. 38(4), pages 441-453, May.
    10. Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
    11. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    12. Jing He & Xiantao Liu & Yong Shi & Weixuan Xu & Nian Yan, 2004. "Classifications Of Credit Cardholder Behavior By Using Fuzzy Linear Programming," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 633-650.
    13. Gang Kou & Yi Peng & Yong Shi & Morgan Wise & Weixuan Xu, 2005. "Discovering Credit Cardholders’ Behavior by Multiple Criteria Linear Programming," Annals of Operations Research, Springer, vol. 135(1), pages 261-274, March.
    14. Yen-Chu Chen & Hung-Shun Huang & Po-Lung Yu, 2012. "Empower Mcdm By Habitual Domains To Solve Challenging Problems In Changeable Spaces," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 457-490.
    15. Wasim Akram Mandal, 2023. "Bipolar Pythagorean Fuzzy Sets and Their Application in Multi-attribute Decision Making Problems," Annals of Data Science, Springer, vol. 10(3), pages 555-587, June.
    16. Hiba Z. Muhammed & Ehab M. Almetwally, 2023. "Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring," Annals of Data Science, Springer, vol. 10(2), pages 481-512, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:7:y:2020:i:4:d:10.1007_s40745-020-00310-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.