IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v343y2024i1d10.1007_s10479-024-06274-0.html
   My bibliography  Save this article

Strategic investment in power generation and transmission under a feed-in premium scheme: a game theoretic real options analysis

Author

Listed:
  • Kazuya Ito

    (National Graduate Institute for Policy Studies (GRIPS)
    Tokyo University of Science)

  • Makoto Tanaka

    (National Graduate Institute for Policy Studies (GRIPS))

  • Ryuta Takashima

    (Tokyo University of Science)

Abstract

The spread of renewable energy has been accelerated by investment in power generation and transmission systems under environmental policy support such as a feed-in premium (FIP) scheme. This study examines the decision-making of the transmission system operator (TSO) and the power generation company (GENCO), where the TSO maximizes social surplus by investing in transmission lines, and the GENCO maximizes its profit by investing in power generation facilities. Specifically, the TSO decides the investment timing, while the GENCO decides the capacity. We develop a real options model to analyze the equilibrium investment timing and capacity under uncertainties in a framework of game between TSO and GENCO. We consider several scenarios in which the GENCO invests in non-renewable energy (NRE); invests in renewable energy (RE) with FIP; and invests in RE with its installation cost reduction. Our results indicate that FIP and the installation cost reduction of RE affect the equilibrium decision in a different manner. We find that FIP tends to be more welfare-enhancing than the reduction of RE installation cost when the degree of uncertainty is larger. We also demonstrate that social surplus can be increased without FIP if the installation cost of RE is reduced sufficiently in the future.

Suggested Citation

  • Kazuya Ito & Makoto Tanaka & Ryuta Takashima, 2024. "Strategic investment in power generation and transmission under a feed-in premium scheme: a game theoretic real options analysis," Annals of Operations Research, Springer, vol. 343(1), pages 349-372, December.
  • Handle: RePEc:spr:annopr:v:343:y:2024:i:1:d:10.1007_s10479-024-06274-0
    DOI: 10.1007/s10479-024-06274-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06274-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06274-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    2. Bean, Patrick & Blazquez, Jorge & Nezamuddin, Nora, 2017. "Assessing the cost of renewable energy policy options – A Spanish wind case study," Renewable Energy, Elsevier, vol. 103(C), pages 180-186.
    3. Kozlova, Mariia & Fleten, Stein-Erik & Hagspiel, Verena, 2019. "Investment timing and capacity choice under rate-of-return regulation for renewable energy support," Energy, Elsevier, vol. 174(C), pages 591-601.
    4. Barth, Rüdiger & Weber, Christoph & Swider, Derk J., 2008. "Distribution of costs induced by the integration of RES-E power," Energy Policy, Elsevier, vol. 36(8), pages 3097-3105, August.
    5. Cheng, Cheng & Wang, Zhen & Liu, Mingming & Chen, Qiang & Gbatu, Abimelech Paye & Ren, Xiaohang, 2017. "Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes," Energy, Elsevier, vol. 127(C), pages 594-610.
    6. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    7. Manu Goyal & Serguei Netessine, 2007. "Strategic Technology Choice and Capacity Investment Under Demand Uncertainty," Management Science, INFORMS, vol. 53(2), pages 192-207, February.
    8. Owen, Anthony D., 2006. "Renewable energy: Externality costs as market barriers," Energy Policy, Elsevier, vol. 34(5), pages 632-642, March.
    9. Schallenberg-Rodriguez, Julieta, 2014. "Renewable electricity support system: Design of a variable premium system based on the Spanish experience," Renewable Energy, Elsevier, vol. 68(C), pages 801-813.
    10. Kort, Peter M. & Murto, Pauli & Pawlina, Grzegorz, 2010. "Uncertainty and stepwise investment," European Journal of Operational Research, Elsevier, vol. 202(1), pages 196-203, April.
    11. Jean Tirole, 1988. "The Theory of Industrial Organization," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262200716, December.
    12. Pollitt, Michael, 2008. "The arguments for and against ownership unbundling of energy transmission networks," Energy Policy, Elsevier, vol. 36(2), pages 704-713, February.
    13. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    14. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    15. Rivier Abbad, Juan, 2010. "Electricity market participation of wind farms: the success story of the Spanish pragmatism," Energy Policy, Elsevier, vol. 38(7), pages 3174-3179, July.
    16. del Rio, Pablo & Gual, Miguel A., 2007. "An integrated assessment of the feed-in tariff system in Spain," Energy Policy, Elsevier, vol. 35(2), pages 994-1012, February.
    17. Lavrutich, Maria N., 2017. "Capacity choice under uncertainty in a duopoly with endogenous exit," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1033-1053.
    18. Lawrence Goulder, 1995. "Environmental taxation and the double dividend: A reader's guide," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 2(2), pages 157-183, August.
    19. Jon Stern & Junior R. Davis, 1998. "Economic reform of the electricity industries of Central and Eastern Europe," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 6(2), pages 427-460, November.
    20. Hung-po Chao,, 2006. "Global electricity transformation: The critical need for integrated market design and risk management research," Energy, Elsevier, vol. 31(6), pages 923-939.
    21. Yu Zeng & Weidong Chen, 2019. "The Determination of Concession Period for Build-Operate-Transfer Solar Photovoltaic Power Project under Policy Incentives: A Case Study of China," Energies, MDPI, vol. 12(18), pages 1-23, September.
    22. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    23. Fleten, Stein-Erik & Linnerud, Kristin & Molnár, Peter & Tandberg Nygaard, Maria, 2016. "Green electricity investment timing in practice: Real options or net present value?," Energy, Elsevier, vol. 116(P1), pages 498-506.
    24. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    25. Krewitt, Wolfram & Heck, Thomas & Trukenmuller, Alfred & Friedrich, Rainer, 1999. "Environmental damage costs from fossil electricity generation in Germany and Europe," Energy Policy, Elsevier, vol. 27(3), pages 173-183, March.
    26. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    27. Pringles, Rolando & Olsina, Fernando & Garcés, Francisco, 2014. "Designing regulatory frameworks for merchant transmission investments by real options analysis," Energy Policy, Elsevier, vol. 67(C), pages 272-280.
    28. Makoto Tanaka & Antonio J. Conejo & Afzal S. Siddiqui, 2022. "Economics of Power Systems," International Series in Operations Research and Management Science, Springer, number 978-3-030-92871-1.
    29. Bosquet, Benoit, 2000. "Environmental tax reform: does it work? A survey of the empirical evidence," Ecological Economics, Elsevier, vol. 34(1), pages 19-32, July.
    30. Barbosa, Luciana & Ferrão, Paulo & Rodrigues, Artur & Sardinha, Alberto, 2018. "Feed-in tariffs with minimum price guarantees and regulatory uncertainty," Energy Economics, Elsevier, vol. 72(C), pages 517-541.
    31. Sereno, Luigi & Efthimiadis, Tilemahos, 2018. "Capacity constraints, transmission investments, and incentive schemes," Energy Policy, Elsevier, vol. 119(C), pages 8-27.
    32. Dangl, Thomas, 1999. "Investment and capacity choice under uncertain demand," European Journal of Operational Research, Elsevier, vol. 117(3), pages 415-428, September.
    33. MacGillivray, Andrew & Jeffrey, Henry & Winskel, Mark & Bryden, Ian, 2014. "Innovation and cost reduction for marine renewable energy: A learning investment sensitivity analysis," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 108-124.
    34. Pyrgou, Andri & Kylili, Angeliki & Fokaides, Paris A., 2016. "The future of the Feed-in Tariff (FiT) scheme in Europe: The case of photovoltaics," Energy Policy, Elsevier, vol. 95(C), pages 94-102.
    35. Weißensteiner, Lukas & Haas, Reinhard & Auer, Hans, 2011. "Offshore wind power grid connection--The impact of shallow versus super-shallow charging on the cost-effectiveness of public support," Energy Policy, Elsevier, vol. 39(8), pages 4631-4643, August.
    36. Boomsma, Trine Krogh & Meade, Nigel & Fleten, Stein-Erik, 2012. "Renewable energy investments under different support schemes: A real options approach," European Journal of Operational Research, Elsevier, vol. 220(1), pages 225-237.
    37. Hagspiel, Verena & Huisman, Kuno J.M. & Kort, Peter M., 2016. "Volume flexibility and capacity investment under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 178(C), pages 95-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michail Chronopoulos & Verena Hagspiel & Stein-Erik Fleten, 2017. "Stepwise investment and capacity sizing under uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 447-472, March.
    2. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    3. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    4. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    5. Michail Chronopoulos, Verena Hagspiel, and Stein-Erik Fleten, 2016. "Stepwise Green Investment under Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Yao, Xing & Fan, Ying & Zhu, Lei & Zhang, Xian, 2020. "Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options," Energy Economics, Elsevier, vol. 86(C).
    7. Nagy, Roel L.G. & Hagspiel, Verena & Kort, Peter M., 2021. "Green capacity investment under subsidy withdrawal risk," Energy Economics, Elsevier, vol. 98(C).
    8. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    9. Finjord, Fredrik & Hagspiel, Verena & Lavrutich, Maria & Tangen, Marius, 2018. "The impact of Norwegian-Swedish green certificate scheme on investment behavior: A wind energy case study," Energy Policy, Elsevier, vol. 123(C), pages 373-389.
    10. Simona Bigerna & Xingang Wen & Verena Hagspiel & Peter M. Kort, 2018. "Green Electricity Investments: Environmental Target and the Optimal Subsidy," Quaderni del Dipartimento di Economia, Finanza e Statistica 29/2018, Università di Perugia, Dipartimento Economia.
    11. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    12. Kuno J.M. Huisman & Peter M. Kort, 2015. "Strategic capacity investment under uncertainty," RAND Journal of Economics, RAND Corporation, vol. 46(2), pages 376-408, June.
    13. Zhang, Zixuan & Chronopoulos, Michail & Kyriakou, Ioannis & Dimitrova, Dimitrina S., 2024. "Bi-level optimisation of subsidy and capacity investment under competition and uncertainty," European Journal of Operational Research, Elsevier, vol. 318(1), pages 327-340.
    14. Bigerna, Simona & Wen, Xingang & Hagspiel, Verena & Kort, Peter M., 2019. "Green electricity investments: Environmental target and the optimal subsidy," European Journal of Operational Research, Elsevier, vol. 279(2), pages 635-644.
    15. Koussis, Nicos & Silaghi, Florina, 2023. "Revenue-sharing and volume flexibility in the supply chain," International Journal of Production Economics, Elsevier, vol. 261(C).
    16. Balter, Anne G. & Huisman, Kuno J.M. & Kort, Peter M., 2022. "New insights in capacity investment under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    17. Balter, Anne G. & Huisman, Kuno J.M. & Kort, Peter M., 2022. "Effects of creative destruction on the size and timing of an investment," International Journal of Production Economics, Elsevier, vol. 252(C).
    18. Alain Bensoussan & Benoit Chevalier-Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Post-Print hal-04325553, HAL.
    19. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    20. Koussis, Nicos & Martzoukos, Spiros H., 2022. "Credit line pricing under heterogeneous risk beliefs," International Journal of Production Economics, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:343:y:2024:i:1:d:10.1007_s10479-024-06274-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.