IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v21y1973i5p1030-1047.html
   My bibliography  Save this article

A Systems Analysis of a University-Health-Service Outpatient Clinic

Author

Listed:
  • Edward J. Rising

    (University of Massachusetts, Amherst, Massachusetts)

  • Robert Baron

    (University of Massachusetts, Amherst, Massachusetts)

  • Barry Averill

    (University of Massachusetts, Amherst, Massachusetts)

Abstract

This paper presents a case study on the use of mathematical-computer models in developing operating policies for a university-health-service outpatient clinic. Based on results predicted by the models, actual policy changes were made in the system; the paper compares the subsequent real-world results with those predicted by the models. The comparison demonstrated the validity of the models, and significant improvements were realized in the changed system. An analysis of daily arrival patterns was used to schedule more appointment patients during periods of low walk-in demand in order to smooth the overall daily arrivals. A Monte Carlo simulation model showed the effects of alternative decision rules for scheduling appointment periods during the day to increase patient throughput and physician utilization.

Suggested Citation

  • Edward J. Rising & Robert Baron & Barry Averill, 1973. "A Systems Analysis of a University-Health-Service Outpatient Clinic," Operations Research, INFORMS, vol. 21(5), pages 1030-1047, October.
  • Handle: RePEc:inm:oropre:v:21:y:1973:i:5:p:1030-1047
    DOI: 10.1287/opre.21.5.1030
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.21.5.1030
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.21.5.1030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kemper, Benjamin & Klaassen, Chris A.J. & Mandjes, Michel, 2014. "Optimized appointment scheduling," European Journal of Operational Research, Elsevier, vol. 239(1), pages 243-255.
    2. Huiqiao Su & Guohua Wan & Shan Wang, 2019. "Online scheduling for outpatient services with heterogeneous patients and physicians," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 123-149, January.
    3. Bitran, Gabriel R. & Leong, Thin-Yin., 1989. "Hotel sales and reservations planning," Working papers 3108-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    5. Tugba Cayirli & Kum Khiong Yang & Ser Aik Quek, 2012. "A Universal Appointment Rule in the Presence of No‐Shows and Walk‐Ins," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 682-697, July.
    6. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    7. Jin Kyung Kwak, 2023. "Analysis of the Waiting Time in Clinic Registration of Patients with Appointments and Random Walk-Ins," IJERPH, MDPI, vol. 20(3), pages 1-9, February.
    8. Alex Kuiper & Robert H. Lee, 2022. "Appointment Scheduling for Multiple Servers," Management Science, INFORMS, vol. 68(10), pages 7422-7440, October.
    9. Kuiper, Alex & Mandjes, Michel, 2015. "Appointment scheduling in tandem-type service systems," Omega, Elsevier, vol. 57(PB), pages 145-156.
    10. T. Meersman & B. Maenhout, 2022. "Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients," Annals of Operations Research, Springer, vol. 312(2), pages 909-948, May.
    11. Ying Yang & Shoucheng Luo & Jing Fan & Xinye Zhou & Chunyu Fu & Guochun Tang, 2019. "Study on specialist outpatient matching appointment and the balance matching model," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 20-39, January.
    12. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    13. Suresh Chand & Herbert Moskowitz & John Norris & Steve Shade & Deanna Willis, 2009. "Improving patient flow at an outpatient clinic: study of sources of variability and improvement factors," Health Care Management Science, Springer, vol. 12(3), pages 325-340, September.
    14. Lara Wiesche & Matthias Schacht & Brigitte Werners, 2017. "Strategies for interday appointment scheduling in primary care," Health Care Management Science, Springer, vol. 20(3), pages 403-418, September.
    15. Kenneth J. Klassen & Reena Yoogalingam, 2019. "Appointment scheduling in multi-stage outpatient clinics," Health Care Management Science, Springer, vol. 22(2), pages 229-244, June.
    16. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    17. Martin Comis & Catherine Cleophas & Christina Büsing, 2021. "Patients, primary care, and policy: Agent-based simulation modeling for health care decision support," Health Care Management Science, Springer, vol. 24(4), pages 799-826, December.
    18. Cote, Murray J., 1999. "Patient flow and resource utilization in an outpatient clinic," Socio-Economic Planning Sciences, Elsevier, vol. 33(3), pages 231-245, September.
    19. Thu Nguyen & Appa Sivakumar & Stephen Graves, 2015. "A network flow approach for tactical resource planning in outpatient clinics," Health Care Management Science, Springer, vol. 18(2), pages 124-136, June.
    20. M. Heshmat & A. Eltawil, 2021. "Solving operational problems in outpatient chemotherapy clinics using mathematical programming and simulation," Annals of Operations Research, Springer, vol. 298(1), pages 289-306, March.
    21. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:21:y:1973:i:5:p:1030-1047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.