IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v341y2024i2d10.1007_s10479-024-06217-9.html
   My bibliography  Save this article

Efficient neighborhood evaluation for the maximally diverse grouping problem

Author

Listed:
  • Arne Schulz

    (Universität Hamburg
    Helmut Schmidt University)

Abstract

The Maximally Diverse Grouping Problem is one of the well-known combinatorial optimization problems with applications in the assignment of students to groups or courses. Due to its NP-hardness several (meta)heuristic solution approaches have been presented in the literature. Most of them include the insertion of an item of one group into another group and the swap of two items currently assigned to different groups as neighborhoods. The paper presents a new efficient implementation for both neighborhoods and compares it with the standard implementation, in which all inserts/swaps are evaluated, as well as the neighborhood decomposition approach. The results show that the newly presented approach is clearly superior for larger instances allowing for up to 160% more iterations in comparison to the standard implementation and up to 76% more iterations in comparison to the neighborhood decomposition approach. Moreover, the results can also be used for (meta)heuristic algorithms for other grouping or clustering problems.

Suggested Citation

  • Arne Schulz, 2024. "Efficient neighborhood evaluation for the maximally diverse grouping problem," Annals of Operations Research, Springer, vol. 341(2), pages 1247-1265, October.
  • Handle: RePEc:spr:annopr:v:341:y:2024:i:2:d:10.1007_s10479-024-06217-9
    DOI: 10.1007/s10479-024-06217-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06217-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06217-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K R Baker & S G Powell, 2002. "Methods for assigning students to groups: a study of alternative objective functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(4), pages 397-404, April.
    2. Lai, Xiangjing & Hao, Jin-Kao, 2016. "Iterated maxima search for the maximally diverse grouping problem," European Journal of Operational Research, Elsevier, vol. 254(3), pages 780-800.
    3. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 92-99, January.
    4. Mingers, J. & O'Brien, F. A., 1995. "Creating student groups with similar characteristics: A heuristic approach," Omega, Elsevier, vol. 23(3), pages 313-321, June.
    5. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    6. B M Baker & C Benn, 2001. "Assigning pupils to tutor groups in a comprehensive school," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 623-629, June.
    7. Yalaoui, Farouk & Chu, Chengbin, 2002. "Parallel machine scheduling to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 76(3), pages 265-279, April.
    8. Paul A. Rubin & Lihui Bai, 2015. "Forming competitively balanced teams," IISE Transactions, Taylor & Francis Journals, vol. 47(6), pages 620-633, June.
    9. Arne Schulz, 2023. "The balanced maximally diverse grouping problem with integer attribute values," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-27, July.
    10. Yang, Xiao & Cai, Zonghui & Jin, Ting & Tang, Zheng & Gao, Shangce, 2022. "A three-phase search approach with dynamic population size for solving the maximally diverse grouping problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 925-953.
    11. Lai, Xiangjing & Hao, Jin-Kao & Fu, Zhang-Hua & Yue, Dong, 2021. "Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1067-1086.
    12. Arne Schulz, 2022. "A new mixed-integer programming formulation for the maximally diverse grouping problem with attribute values," Annals of Operations Research, Springer, vol. 318(1), pages 501-530, November.
    13. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "Erratum: A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1423-1430, July.
    14. M Gallego & M Laguna & R Martí & A Duarte, 2013. "Tabu search with strategic oscillation for the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 724-734, May.
    15. Gintaras Palubeckis & Armantas Ostreika & Dalius Rubliauskas, 2015. "Maximally diverse grouping: an iterated tabu search approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(4), pages 579-592, April.
    16. Schulz, Arne, 2021. "The balanced maximally diverse grouping problem with block constraints," European Journal of Operational Research, Elsevier, vol. 294(1), pages 42-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arne Schulz, 2022. "A new mixed-integer programming formulation for the maximally diverse grouping problem with attribute values," Annals of Operations Research, Springer, vol. 318(1), pages 501-530, November.
    2. Yang, Xiao & Cai, Zonghui & Jin, Ting & Tang, Zheng & Gao, Shangce, 2022. "A three-phase search approach with dynamic population size for solving the maximally diverse grouping problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 925-953.
    3. Schulz, Arne, 2021. "The balanced maximally diverse grouping problem with block constraints," European Journal of Operational Research, Elsevier, vol. 294(1), pages 42-53.
    4. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    5. Lai, Xiangjing & Hao, Jin-Kao & Fu, Zhang-Hua & Yue, Dong, 2021. "Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1067-1086.
    6. Akkan, Can & Erdem Külünk, M. & Koçaş, Cenk, 2016. "Finding robust timetables for project presentations of student teams," European Journal of Operational Research, Elsevier, vol. 249(2), pages 560-576.
    7. Anna Martínez-Gavara & Vicente Campos & Micael Gallego & Manuel Laguna & Rafael Martí, 2015. "Tabu search and GRASP for the capacitated clustering problem," Computational Optimization and Applications, Springer, vol. 62(2), pages 589-607, November.
    8. Zhou, Qing & Benlic, Una & Wu, Qinghua & Hao, Jin-Kao, 2019. "Heuristic search to the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 464-487.
    9. Arne Schulz, 2023. "The balanced maximally diverse grouping problem with integer attribute values," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-27, July.
    10. Seizinger, Markus & Brunner, Jens O., 2023. "Optimized planning of nursing curricula in dual vocational schools focusing on the German health care system," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1223-1241.
    11. Ríos-Mercado, Roger Z. & Bard, Jonathan F., 2019. "An exact algorithm for designing optimal districts in the collection of waste electric and electronic equipment through an improved reformulation," European Journal of Operational Research, Elsevier, vol. 276(1), pages 259-271.
    12. Sergio García & Valentina Cacchiani & Lieselot Vanhaverbeke & Martin Bischoff, 2014. "The table placement problem: a research challenge at the EWI 2007," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 208-226, April.
    13. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "Erratum: A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1423-1430, July.
    14. Z P Fan & Y Chen & J Ma & S Zeng, 2011. "A hybrid genetic algorithmic approach to the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 92-99, January.
    15. Fernández, Elena & Kalcsics, Jörg & Nickel, Stefan, 2013. "The maximum dispersion problem," Omega, Elsevier, vol. 41(4), pages 721-730.
    16. Kayse Lee Maass & Vera Mann Hey Lo & Anna Weiss & Mark S. Daskin, 2015. "Maximizing Diversity in the Engineering Global Leadership Cultural Families," Interfaces, INFORMS, vol. 45(4), pages 293-304, August.
    17. Dmitry Krass & Anton Ovchinnikov, 2006. "The University of Toronto’s Rotman School of Management Uses Management Science to Create MBA Study Groups," Interfaces, INFORMS, vol. 36(2), pages 126-137, April.
    18. Gliesch, Alex & Ritt, Marcus, 2021. "A hybrid heuristic for the maximum dispersion problem," European Journal of Operational Research, Elsevier, vol. 288(3), pages 721-735.
    19. Lai, Xiangjing & Hao, Jin-Kao, 2016. "Iterated maxima search for the maximally diverse grouping problem," European Journal of Operational Research, Elsevier, vol. 254(3), pages 780-800.
    20. Rex Cutshall & Srinagesh Gavirneni & Kenneth Schultz, 2007. "Indiana University’s Kelley School of Business Uses Integer Programming to Form Equitable, Cohesive Student Teams," Interfaces, INFORMS, vol. 37(3), pages 265-276, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:341:y:2024:i:2:d:10.1007_s10479-024-06217-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.