IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v288y2021i3p721-735.html
   My bibliography  Save this article

A hybrid heuristic for the maximum dispersion problem

Author

Listed:
  • Gliesch, Alex
  • Ritt, Marcus

Abstract

In this paper we propose a hybrid heuristic for the Maximum Dispersion Problem of finding a balanced partition of a set of objects such that the shortest intra-part distance is maximized. In contrast to clustering problems, dispersion problems aim for a large spread of objects in the same group. They arise in many practical applications such as waste collection and the formation of study groups. The heuristic alternates between finding a balanced solution, and increasing the dispersion. Balancing is achieved by a combination of a minimum cost flow algorithm to find promising pairs of parts and a branch-and-bound algorithm that searches for an optimal balance, and the dispersion is increased by a local search followed by an ejection chain method for escaping local minima. We also propose new upper bounds for the problem. In computational experiments we show that the heuristic is able to find solutions significantly faster than previous approaches. Solutions are close to optimal and in many cases provably optimal.

Suggested Citation

  • Gliesch, Alex & Ritt, Marcus, 2021. "A hybrid heuristic for the maximum dispersion problem," European Journal of Operational Research, Elsevier, vol. 288(3), pages 721-735.
  • Handle: RePEc:eee:ejores:v:288:y:2021:i:3:p:721-735
    DOI: 10.1016/j.ejor.2020.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720305543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K R Baker & S G Powell, 2002. "Methods for assigning students to groups: a study of alternative objective functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(4), pages 397-404, April.
    2. Mahdi Moeini & Oliver Wendt, 2018. "A Heuristic for Solving the Maximum Dispersion Problem," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 405-410, Springer.
    3. Ríos-Mercado, Roger Z. & Bard, Jonathan F., 2019. "An exact algorithm for designing optimal districts in the collection of waste electric and electronic equipment through an improved reformulation," European Journal of Operational Research, Elsevier, vol. 276(1), pages 259-271.
    4. Prokopyev, Oleg A. & Kong, Nan & Martinez-Torres, Dayna L., 2009. "The equitable dispersion problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 59-67, August.
    5. Alexander Butsch & Jörg Kalcsics & Gilbert Laporte, 2014. "Districting for Arc Routing," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 809-824, November.
    6. E Fernández & J Kalcsics & S Nickel & R Z Ríos-Mercado, 2010. "A novel maximum dispersion territory design model arising in the implementation of the WEEE-directive," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 503-514, March.
    7. Lai, Xiangjing & Hao, Jin-Kao, 2016. "Iterated maxima search for the maximally diverse grouping problem," European Journal of Operational Research, Elsevier, vol. 254(3), pages 780-800.
    8. Erkut, Erhan, 1990. "The discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 48-60, May.
    9. Fernández, Elena & Kalcsics, Jörg & Nickel, Stefan, 2013. "The maximum dispersion problem," Omega, Elsevier, vol. 41(4), pages 721-730.
    10. Mulvey, John M. & Beck, Michael P., 1984. "Solving capacitated clustering problems," European Journal of Operational Research, Elsevier, vol. 18(3), pages 339-348, December.
    11. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    12. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Ting L. & Church, Richard L., 2015. "On the unified dispersion problem: Efficient formulations and exact algorithms," European Journal of Operational Research, Elsevier, vol. 241(3), pages 622-630.
    2. Zhou, Qing & Benlic, Una & Wu, Qinghua & Hao, Jin-Kao, 2019. "Heuristic search to the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 464-487.
    3. Ríos-Mercado, Roger Z. & Bard, Jonathan F., 2019. "An exact algorithm for designing optimal districts in the collection of waste electric and electronic equipment through an improved reformulation," European Journal of Operational Research, Elsevier, vol. 276(1), pages 259-271.
    4. Sandoval, M. Gabriela & Álvarez-Miranda, Eduardo & Pereira, Jordi & Ríos-Mercado, Roger Z. & Díaz, Juan A., 2022. "A novel districting design approach for on-time last-mile delivery: An application on an express postal company," Omega, Elsevier, vol. 113(C).
    5. Sergey Kovalev & Isabelle Chalamon & Fabio J. Petani, 2023. "Maximizing single attribute diversity in group selection," Annals of Operations Research, Springer, vol. 320(1), pages 535-540, January.
    6. Shi, Jianmai & Chen, Wenyi & Verter, Vedat, 2023. "The joint impact of environmental awareness and system infrastructure on e-waste collection," European Journal of Operational Research, Elsevier, vol. 310(2), pages 760-772.
    7. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    8. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    9. Arne Schulz, 2022. "A new mixed-integer programming formulation for the maximally diverse grouping problem with attribute values," Annals of Operations Research, Springer, vol. 318(1), pages 501-530, November.
    10. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    11. Sayyady, Fatemeh & Fathi, Yahya, 2016. "An integer programming approach for solving the p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 216-225.
    12. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    13. Juan F. Gomez & Anna Martínez-Gavara & Javier Panadero & Angel A. Juan & Rafael Martí, 2024. "A Forward–Backward Simheuristic for the Stochastic Capacitated Dispersion Problem," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    14. Aringhieri, Roberto & Cordone, Roberto & Grosso, Andrea, 2015. "Construction and improvement algorithms for dispersion problems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 21-33.
    15. Zhou, Lin & Zhen, Lu & Baldacci, Roberto & Boschetti, Marco & Dai, Ying & Lim, Andrew, 2021. "A Heuristic Algorithm for solving a large-scale real-world territory design problem," Omega, Elsevier, vol. 103(C).
    16. Amirgaliyeva, Zhazira & Mladenović, Nenad & Todosijević, Raca & Urošević, Dragan, 2017. "Solving the maximum min-sum dispersion by alternating formulations of two different problems," European Journal of Operational Research, Elsevier, vol. 260(2), pages 444-459.
    17. Anna Martínez-Gavara & Vicente Campos & Manuel Laguna & Rafael Martí, 2017. "Heuristic solution approaches for the maximum minsum dispersion problem," Journal of Global Optimization, Springer, vol. 67(3), pages 671-686, March.
    18. Ren, Jintong & Hao, Jin-Kao & Wu, Feng & Fu, Zhang-Hua, 2023. "An effective hybrid search algorithm for the multiple traveling repairman problem with profits," European Journal of Operational Research, Elsevier, vol. 304(2), pages 381-394.
    19. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2023. "Approximation schemes for districting problems with probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 307(1), pages 233-248.
    20. Bruno, Giuseppe & Diglio, Antonio & Passaro, Renato & Piccolo, Carmela & Quinto, Ivana, 2021. "Measuring spatial access to the recovery networks for WEEE: An in-depth analysis of the Italian case," International Journal of Production Economics, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:288:y:2021:i:3:p:721-735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.