IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v341y2024i1d10.1007_s10479-023-05656-0.html
   My bibliography  Save this article

Gaussian kernel with correlated variables for incomplete data

Author

Listed:
  • Jeongsub Choi

    (West Virginia University)

  • Youngdoo Son

    (Dongguk University–Seoul)

  • Myong K. Jeong

    (Rutgers, The State University of New Jersey)

Abstract

The presence of missing components in incomplete instances precludes a kernel-based model from incorporating partially observed components of incomplete instances and computing kernels, including Gaussian kernels that are extensively used in machine learning modeling and applications. Existing methods with Gaussian kernels to handle incomplete data, however, are based on independence among variables. In this study, we propose a new method, the expected Gaussian kernel with correlated variables, that estimates the Gaussian kernel with incomplete data, by considering the correlation among variables. In the proposed method, the squared distance between two instance vectors is modeled with the sum of the correlated squared unit-dimensional distances between the instances, and the Gaussian kernel with missing values is obtained by estimating the expected Gaussian kernel function under the probability distribution for the squared distance between the vectors. The proposed method is evaluated on synthetic data and real-life data from benchmarks and a case from a multi-pattern photolithographic process for wafer fabrication in semiconductor manufacturing. The experimental results show the improvement by the proposed method in the estimation of Gaussian kernels with incomplete data of correlated variables.

Suggested Citation

  • Jeongsub Choi & Youngdoo Son & Myong K. Jeong, 2024. "Gaussian kernel with correlated variables for incomplete data," Annals of Operations Research, Springer, vol. 341(1), pages 223-244, October.
  • Handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05656-0
    DOI: 10.1007/s10479-023-05656-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05656-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05656-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:341:y:2024:i:1:d:10.1007_s10479-023-05656-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.