IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v52y2020i9p998-1013.html
   My bibliography  Save this article

Count-based change point detection via multi-output log-Gaussian Cox processes

Author

Listed:
  • Joonho Bae
  • Jinkyoo Park

Abstract

The ability to detect change points is a core skill in system monitoring and prognostics. When data take the form of frequencies, i.e., count data, counting processes such as Poisson processes are extensively used for modeling. However, many existing count-based approaches rely on parametric models or deterministic frameworks, failing to consider complex system uncertainty based on temporal and environmental contexts. Another challenge is analyzing interrelated events simultaneously to detect change points that can be missed by independent analyses. This article presents a Multi-Output Log-Gaussian Cox Process with a Cross-Spectral Mixture kernel (MOLGCP-CSM) as a count-based change point detection algorithm. The proposed model employs MOLGCP to flexibly model time-varying intensities of events over multiple channels with the CSM kernel that can capture either negative or positive correlations, as well as phase differences between stochastic processes. During the monitoring, the proposed approach measures the level of change in real-time by computing a weighted likelihood of observation with respect to the constructed model and determines whether a target system experiences a change point by conducting a statistical test based on extreme value theory. Our method is validated using three types of datasets: synthetic, accelerometer vibration, and gas regulator data.

Suggested Citation

  • Joonho Bae & Jinkyoo Park, 2020. "Count-based change point detection via multi-output log-Gaussian Cox processes," IISE Transactions, Taylor & Francis Journals, vol. 52(9), pages 998-1013, September.
  • Handle: RePEc:taf:uiiexx:v:52:y:2020:i:9:p:998-1013
    DOI: 10.1080/24725854.2019.1676937
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1676937
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1676937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bae, Joonho & Park, Jinkyoo & Choi, Jeonghye & Bum Soh, Seung, 2023. "A recommending system for mobile games using the dynamic nonparametric model," Journal of Business Research, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:52:y:2020:i:9:p:998-1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.