IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v47y2016i15p3637-3645.html
   My bibliography  Save this article

Least squares twin support vector machine with Universum data for classification

Author

Listed:
  • Yitian Xu
  • Mei Chen
  • Guohui Li

Abstract

Universum, a third class not belonging to either class of the classification problem, allows to incorporate the prior knowledge into the learning process. A lot of previous work have demonstrated that the Universum is helpful to the supervised and semi-supervised classification. Moreover, Universum has already been introduced into the support vector machine (SVM) and twin support vector machine (TSVM) to enhance the generalisation performance. To further increase the generalisation performance, we propose a least squares TSVM with Universum data (ULS$\mathfrak {U}_\mathcal {LS}$-TSVM) in this paper. Our ULS$\mathfrak {U}_\mathcal {LS}$-TSVM possesses the following advantages: first, it exploits Universum data to improve generalisation performance. Besides, it implements the structural risk minimisation principle by adding a regularisation to the objective function. Finally, it costs less computing time by solving two small-sized systems of linear equations instead of a single larger-sized quadratic programming problem. To verify the validity of our proposed algorithm, we conduct various experiments around the size of labelled samples and the number of Universum data on data-sets including seven benchmark data-sets, Toy data, MNIST and Face images. Empirical experiments indicate that Universum contributes to making prediction accuracy improved even stable. Especially when fewer labelled samples given, ULS$\mathfrak {U}_\mathcal {LS}$-TSVM is far superior to the improved LS-TSVM (ILS-TSVM), and slightly superior to the U$\mathfrak {U}$-TSVM.

Suggested Citation

  • Yitian Xu & Mei Chen & Guohui Li, 2016. "Least squares twin support vector machine with Universum data for classification," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3637-3645, November.
  • Handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3637-3645
    DOI: 10.1080/00207721.2015.1110212
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2015.1110212
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2015.1110212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. A. Ganaie & M. Tanveer & Jatin Jangir, 2023. "EEG signal classification via pinball universum twin support vector machine," Annals of Operations Research, Springer, vol. 328(1), pages 451-492, September.
    2. Reshma Khemchandani & Pooja Saigal & Suresh Chandra, 2018. "Angle-based twin support vector machine," Annals of Operations Research, Springer, vol. 269(1), pages 387-417, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3637-3645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.