IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i3d10.1007_s10479-021-04147-4.html
   My bibliography  Save this article

A tensor train approach for internet traffic data completion

Author

Listed:
  • Zhiyuan Zhang

    (Hangzhou Dianzi University)

  • Chen Ling

    (Hangzhou Dianzi University)

  • Hongjin He

    (Ningbo University)

  • Liqun Qi

    (Hangzhou Dianzi University)

Abstract

The internet traffic data completion is an important and challenging task in network engineering. Due to the multi-dimensionality of internet traffic data, we introduce two tensor train (TT) based optimization models with temporal regularization to recover the data from an incomplete observation. Moreover, we propose two easily implementable algorithms by following the spirit of alternating minimization. It is remarkable that our algorithms have closed-form solutions and one algorithm can be implemented in a parallel way for large-scale problems. Some numerical experiments on real-world datasets show that our approaches perform better than some existing state-of-the-art matrix- and tensor-based completion methods in terms of achieving higher accuracy and taking much less computing time for some datasets.

Suggested Citation

  • Zhiyuan Zhang & Chen Ling & Hongjin He & Liqun Qi, 2024. "A tensor train approach for internet traffic data completion," Annals of Operations Research, Springer, vol. 339(3), pages 1461-1479, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-021-04147-4
    DOI: 10.1007/s10479-021-04147-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04147-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04147-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    2. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    3. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    2. Richard Sands & Forrest Young, 1980. "Component models for three-way data: An alternating least squares algorithm with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 39-67, March.
    3. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    4. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    5. Minghui Ding & Yimin Wei & Pengpeng Xie, 2023. "A Randomized Singular Value Decomposition for Third-Order Oriented Tensors," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 358-382, April.
    6. Alwin Stegeman, 2018. "Simultaneous Component Analysis by Means of Tucker3," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 21-47, March.
    7. Pieter C. Schoonees & Patrick J. F. Groenen & Michel Velden, 2022. "Least-squares bilinear clustering of three-way data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 1001-1037, December.
    8. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    9. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    10. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    11. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    12. Serrano Cinca, C. & Mar Molinero, C. & Gallizo Larraz, J.L., 2005. "Country and size effects in financial ratios: A European perspective," Global Finance Journal, Elsevier, vol. 16(1), pages 26-47, August.
    13. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    14. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    15. Modroño Herrán, Juan Ignacio & Fernández Aguirre, María Carmen & Landaluce Calvo, M. Isabel, 2003. "Una propuesta para el análisis de tablas múltiples," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    16. Peter Schönemann, 1970. "On metric multidimensional unfolding," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 349-366, September.
    17. Andrii Babii & Eric Ghysels & Junsu Pan, 2022. "Tensor Principal Component Analysis," Papers 2212.12981, arXiv.org, revised Aug 2023.
    18. Sagarra, Marti & Mar-Molinero, Cecilio & Agasisti, Tommaso, 2017. "Exploring the efficiency of Mexican universities: Integrating Data Envelopment Analysis and Multidimensional Scaling," Omega, Elsevier, vol. 67(C), pages 123-133.
    19. Namgil Lee & Jong-Min Kim, 2018. "Block tensor train decomposition for missing data estimation," Statistical Papers, Springer, vol. 59(4), pages 1283-1305, December.
    20. Jos Berge & Henk Kiers, 1991. "Some clarifications of the CANDECOMP algorithm applied to INDSCAL," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 317-326, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:3:d:10.1007_s10479-021-04147-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.