IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-022-05071-x.html
   My bibliography  Save this article

Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network

Author

Listed:
  • Sangho Lee

    (Dongguk University – Seoul
    Dongguk University – Seoul)

  • Jeongsub Choi

    (West Virginia University)

  • Youngdoo Son

    (Dongguk University – Seoul
    Dongguk University – Seoul)

Abstract

Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflect the global structural information of a time series, many recent studies have used a graph constructed by visibility algorithms (VAs) that convert a time series into a graph. However, applying the VAs to high-frequency time series—which the machines typically generate—is challenging because the computational burden of the VAs increases with the length of a time series. Therefore, we propose a novel graph-based fault diagnosis framework for high-frequency time series. First, we propose an efficient VA (EVA) that extracts essential data points to characterize a time series and constructs a graph from a high-frequency time series. Not only do the EVAs convert a given time series faster into a graph than the VAs, but the resulting graphs also characterize the time-series structure with simplicity and clarity by selecting essential data points. Then, we adopt a graph convolutional network to analyze the resulting graphs and diagnose faults. We verified the characteristics of the EVAs and the fault diagnosis performance of the proposed framework using toy time series and public rotating machinery datasets, respectively. The results demonstrated that, compared to the VAs, the EVAs are efficient in terms of computational cost, and the proposed framework is effective for fault diagnosis.

Suggested Citation

  • Sangho Lee & Jeongsub Choi & Youngdoo Son, 2024. "Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network," Annals of Operations Research, Springer, vol. 339(1), pages 813-833, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05071-x
    DOI: 10.1007/s10479-022-05071-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-05071-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-05071-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05071-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.