IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-022-05071-x.html
   My bibliography  Save this article

Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network

Author

Listed:
  • Sangho Lee

    (Dongguk University – Seoul
    Dongguk University – Seoul)

  • Jeongsub Choi

    (West Virginia University)

  • Youngdoo Son

    (Dongguk University – Seoul
    Dongguk University – Seoul)

Abstract

Time series is a popular data type that is collected from various machines for fault diagnosis. Although most time-series models for fault diagnosis reflect local relations well, they cannot extract the global patterns that contain valuable information that can be used to recognize faults. To reflect the global structural information of a time series, many recent studies have used a graph constructed by visibility algorithms (VAs) that convert a time series into a graph. However, applying the VAs to high-frequency time series—which the machines typically generate—is challenging because the computational burden of the VAs increases with the length of a time series. Therefore, we propose a novel graph-based fault diagnosis framework for high-frequency time series. First, we propose an efficient VA (EVA) that extracts essential data points to characterize a time series and constructs a graph from a high-frequency time series. Not only do the EVAs convert a given time series faster into a graph than the VAs, but the resulting graphs also characterize the time-series structure with simplicity and clarity by selecting essential data points. Then, we adopt a graph convolutional network to analyze the resulting graphs and diagnose faults. We verified the characteristics of the EVAs and the fault diagnosis performance of the proposed framework using toy time series and public rotating machinery datasets, respectively. The results demonstrated that, compared to the VAs, the EVAs are efficient in terms of computational cost, and the proposed framework is effective for fault diagnosis.

Suggested Citation

  • Sangho Lee & Jeongsub Choi & Youngdoo Son, 2024. "Efficient visibility algorithm for high-frequency time-series: application to fault diagnosis with graph convolutional network," Annals of Operations Research, Springer, vol. 339(1), pages 813-833, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05071-x
    DOI: 10.1007/s10479-022-05071-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-05071-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-05071-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    2. Ning Wang & Zhuo Zhang & Jiao Zhao & Dawei Hu, 2022. "Recognition method of equipment state with the FLDA based Mahalanobis–Taguchi system," Annals of Operations Research, Springer, vol. 311(1), pages 417-435, April.
    3. Xu, Paiheng & Zhang, Rong & Deng, Yong, 2018. "A novel visibility graph transformation of time series into weighted networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 201-208.
    4. Kuen-Suan Chen & Chun-Min Yu, 2022. "Lifetime performance evaluation and analysis model of passive component capacitor products," Annals of Operations Research, Springer, vol. 311(1), pages 51-64, April.
    5. Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
    6. Mutua Stephen & Changgui Gu & Huijie Yang, 2015. "Visibility Graph Based Time Series Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Meiyan & Wu, Bei, 2024. "Optimal condition-based opportunistic maintenance policy for two-component systems considering common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    4. Saldivia, Sebastián & Pastén, Denisse & Moya, Pablo S., 2024. "Using visibility graphs to characterize non-Maxwellian turbulent plasmas," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Gonçalves, Bruna Amin & Carpi, Laura & Rosso, Osvaldo A. & Ravetti, Martín G., 2016. "Time series characterization via horizontal visibility graph and Information Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 93-102.
    6. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    7. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Yue Yang & Changgui Gu & Qin Xiao & Huijie Yang, 2017. "Evolution of scaling behaviors embedded in sentence series from A Story of the Stone," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-14, February.
    9. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Kuo-Ching Chiou, 2023. "Building Up of Fuzzy Evaluation Model of Life Performance Based on Type-II Censored Data," Mathematics, MDPI, vol. 11(17), pages 1-12, August.
    11. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    13. Roman Rodriguez-Aguilar & Jose-Antonio Marmolejo-Saucedo & Utku Köse, 2024. "Development of a Digital Twin Driven by a Deep Learning Model for Fault Diagnosis of Electro-Hydrostatic Actuators," Mathematics, MDPI, vol. 12(19), pages 1-17, October.
    14. Gao, Shan, 2023. "Reliability analysis and optimization for a redundant system with dependent failures and variable repair rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 637-659.
    15. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Yuan, Qianshun & Semba, Sherehe & Zhang, Jing & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2021. "Multi-scale transition matrix approach to time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    17. Jamshid Ardalankia & Jafar Askari & Somaye Sheykhali & Emmanuel Haven & G. Reza Jafari, 2020. "Mapping Coupled Time-series Onto Complex Network," Papers 2004.13536, arXiv.org, revised Aug 2020.
    18. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    19. Pang, Zhendong & Luan, Yingxin & Chen, Jiahong & Li, Teng, 2024. "ParInfoGPT: An LLM-based two-stage framework for reliability assessment of rotating machine under partial information," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Zeng, Ying & Huang, Tudi & Li, Yan-Feng & Huang, Hong-Zhong, 2023. "Reliability modeling for power converter in satellite considering periodic phased mission," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05071-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.