IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924005009.html
   My bibliography  Save this article

Using visibility graphs to characterize non-Maxwellian turbulent plasmas

Author

Listed:
  • Saldivia, Sebastián
  • Pastén, Denisse
  • Moya, Pablo S.

Abstract

The Visibility Graph, a technique for mapping time series into complex networks, is employed to research underlying physical mechanisms in collisionless, turbulent plasmas. We analyze four distinct time series of magnetic field fluctuations obtained from Particle in Cell (PIC) simulations, initialized varying the κ parameter of its particle velocity distributions to explore departures from thermodynamic equilibrium. All studied cases exhibit a power law behavior in the degree distribution of the nodes. The critical exponent of this distribution unveils information about network properties, including particle correlations and heterogeneity. We compute the γ exponent for the degree distribution of the scale-free network and observe its evolution according to κ, peaking at κ=3. This trend suggests that long-range correlations are more prominent in plasmas far from thermal equilibrium, while short-range correlations dominate in thermal plasmas following a Maxwellian distribution. These findings align with previous non-collisional plasma studies. Additionally, we investigate the μ and ν exponents associated with the slopes of power spectra of the magnetic fluctuations, obtaining insights into the energy dissipation and temporal persistence of the time series. Our findings reveal that low-frequency fluctuations exhibit the sharpest energy dissipation in thermal equilibrium environments, while high-frequency fluctuations dominate in systems described by velocity distributions with small κ. When comparing the correlation between these exponents and γ as a function of κ, we find a direct correlation for the exponent ν associated with high-frequencies, and an anticorrelation for the low-frequencies exponent μ. This finding underscores the connection between long- and short-range correlations and the Debye sphere of the plasma, revealing that the γ metric of the Visibility Graph is only able to see the smaller scales of a time series.

Suggested Citation

  • Saldivia, Sebastián & Pastén, Denisse & Moya, Pablo S., 2024. "Using visibility graphs to characterize non-Maxwellian turbulent plasmas," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005009
    DOI: 10.1016/j.chaos.2024.114948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005009
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    2. Mutua Stephen & Changgui Gu & Huijie Yang, 2015. "Visibility Graph Based Time Series Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    2. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2021. "A global economic policy uncertainty index from principal component analysis," Finance Research Letters, Elsevier, vol. 40(C).
    3. Liu, Zhifeng & Huynh, Toan Luu Duc & Dai, Peng-Fei, 2021. "The impact of COVID-19 on the stock market crash risk in China," Research in International Business and Finance, Elsevier, vol. 57(C).
    4. Dai, Peng-Fei & Xiong, Xiong & Zhang, Jin & Zhou, Wei-Xing, 2022. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Resources Policy, Elsevier, vol. 78(C).
    5. Dai, Peng-Fei & Xiong, Xiong & Duc Huynh, Toan Luu & Wang, Jiqiang, 2022. "The impact of economic policy uncertainties on the volatility of European carbon market," Journal of Commodity Markets, Elsevier, vol. 26(C).
    6. Jiqiang Wang & Yinpeng Liu & Ying Fan & Jianfeng Guo, 2020. "The Impact of Industry on European Union Emissions Trading Market—From Network Perspective," Energies, MDPI, vol. 13(21), pages 1-16, October.
    7. Mondal, Mitali & Mondal, Arindam & Mondal, Joyati & Patra, Kanchan Kumar & Deb, Argha & Ghosh, Dipak, 2018. "Evidence of centrality dependent fractal behavior in high energy heavy ion interactions: Hint of two different sources," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 230-237.
    8. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    9. Chen, Yu & Ling, Guang & Song, Xiangxiang & Tu, Wenhui, 2023. "Characterizing the statistical complexity of nonlinear time series via ordinal pattern transition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    10. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Gonçalves, Bruna Amin & Carpi, Laura & Rosso, Osvaldo A. & Ravetti, Martín G., 2016. "Time series characterization via horizontal visibility graph and Information Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 93-102.
    12. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    13. Yue Yang & Changgui Gu & Qin Xiao & Huijie Yang, 2017. "Evolution of scaling behaviors embedded in sentence series from A Story of the Stone," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-14, February.
    14. Yuan, Qianshun & Semba, Sherehe & Zhang, Jing & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2021. "Multi-scale transition matrix approach to time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    15. Jamshid Ardalankia & Jafar Askari & Somaye Sheykhali & Emmanuel Haven & G. Reza Jafari, 2020. "Mapping Coupled Time-series Onto Complex Network," Papers 2004.13536, arXiv.org, revised Aug 2020.
    16. Yan, Shuang & Gu, Changgui & Yang, Huijie, 2024. "Bridge successive states for a complex system with evolutionary matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    17. Dai, Xingyu & Dai, Peng-Fei & Wang, Qunwei & Ouyang, Zhi-Yi, 2023. "The impact of energy-exporting countries’ EPUs on China’s energy futures investors: Risk preference, investment position and investment horizon," Research in International Business and Finance, Elsevier, vol. 64(C).
    18. Wangfang Xu & Wenjia Rao & Longbao Wei & Qianqian Wang, 2023. "A Normalized Global Economic Policy Uncertainty Index from Unsupervised Machine Learning," Mathematics, MDPI, vol. 11(15), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.