IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i4p812-838.html
   My bibliography  Save this article

A novel approach based on fault tree analysis and Bayesian network for multi-state reliability analysis of complex equipment systems

Author

Listed:
  • Xiaofang Luo
  • Yushan Li
  • Xu Bai
  • Rongkeng Tang
  • Hui Jin

Abstract

Due to the complex structure of multi-state complex systems and the lack of data, information, and knowledge, the uncertainty of the logical relationship between the failure states of systems and components and the uncertainty of related failure data become the key issues in the reliability analysis of multi-state complex systems. In this paper, combined with multi-state fault tree (MSFT), a multi-state reliability assessment framework for complex systems considering uncertainty based on multi-source information fusion and multi-state Bayesian network (MSBN) is proposed. The multi-source information fusion method combines historical data and experts’ opinions to solve the uncertainty problem of multi-state failure data in complex equipment systems effectively. Based on the multi-source information fusion method, the calculation method of multi-state prior probability and the construction method of conditional probability are given. By constructing the conditional probability table (CPT), the uncertain logic relationship between the multi-state nodes is effectively expressed, which effectively improves the efficiency of CPT acquisition for MSBN and reduces the workload of experts scoring. Finally, a mud circulating system is taken as an example to prove the proposed method, and the specific calculation process, evaluation results, and some discussions are given. The results show that the proposed method is an effective multi-state reliability analysis method for complex uncertain multi-state systems.

Suggested Citation

  • Xiaofang Luo & Yushan Li & Xu Bai & Rongkeng Tang & Hui Jin, 2024. "A novel approach based on fault tree analysis and Bayesian network for multi-state reliability analysis of complex equipment systems," Journal of Risk and Reliability, , vol. 238(4), pages 812-838, August.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:812-838
    DOI: 10.1177/1748006X231171449
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X231171449
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X231171449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    3. Wang, Chuan & Liu, Yupeng & Wang, Dongbo & Wang, Guorong & Wang, Dingya & Yu, Chao, 2021. "Reliability evaluation method based on dynamic fault diagnosis results: A case study of a seabed mud lifting system," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.
    4. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    5. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    7. Weiliang Qiao & Yu Liu & Xiaoxue Ma & Yang Liu, 2020. "Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 957-980, May.
    8. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Wang, Ning, 2024. "Algorithms for Bayesian network modeling and reliability inference of complex multistate systems with common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Chunchang Zhang & Hu Sun & Yuanyuan Zhang & Gen Li & Shibo Li & Junyu Chang & Gongqian Shi, 2023. "Fire Accident Risk Analysis of Lithium Battery Energy Storage Systems during Maritime Transportation," Sustainability, MDPI, vol. 15(19), pages 1-12, September.
    10. Zhi Yuan & Nima Khakzad & Faisal Khan & Paul Amyotte, 2015. "Risk Analysis of Dust Explosion Scenarios Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 278-291, February.
    11. Kraidi, Layth & Shah, Raj & Matipa, Wilfred & Borthwick, Fiona, 2019. "Analyzing the critical risk factors associated with oil and gas pipeline projects in Iraq," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 14-22.
    12. Zhang, Hua & Li, Zongkun & Ge, Wei & Zhang, Yadong & Wang, Te & Sun, Heqiang & Jiao, Yutie, 2024. "An extended Bayesian network model for calculating dam failure probability based on fuzzy sets and dynamic evidential reasoning," Energy, Elsevier, vol. 301(C).
    13. Tan, Tu Guang & Jang, Sunghyon & Yamaguchi, Akira, 2019. "A novel method for risk-informed decision-making under non-ideal Instrumentation and Control conditions through the application of Bayes’ Theorem," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 463-472.
    14. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Fam, Mei Ling & He, Xuhong & Konovessis, Dimitrios & Ong, Lin Seng, 2020. "Using Dynamic Bayesian Belief Network for analysing well decommissioning failures and long-term monitoring of decommissioned wells," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    16. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Eldosouky, AbdelRahman & Saad, Walid & Mandayam, Narayan, 2021. "Resilient critical infrastructure: Bayesian network analysis and contract-Based optimization," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2019. "An integrated approach for real-time hazard mitigation in complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 297-309.
    19. Liao, Zengbu & Zhan, Keyi & Zhao, Hang & Deng, Yuntao & Geng, Jia & Chen, Xuefeng & Song, Zhiping, 2024. "Addressing class-imbalanced learning in real-time aero-engine gas-path fault diagnosis via feature filtering and mapping," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    20. Limao Zhang & Xianguo Wu & Yawei Qin & Miroslaw J. Skibniewski & Wenli Liu, 2016. "Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel‐Induced Pipeline Damage," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 278-301, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:812-838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.