IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i1d10.1007_s10479-023-05567-0.html
   My bibliography  Save this article

A risk analytics model for strategic workforce planning: readiness of enlisted military personnel

Author

Listed:
  • Leo MacDonald

    (Kennesaw State University)

  • Jomon Aliyas Paul

    (Kennesaw State University)

Abstract

We develop a dynamic stochastic model of military workforce planning that incorporates uncertainties about personnel gains and losses across ranks. We then apply it to determine the probability of not meeting required targets as well as the resulting shortages and overages in the short, medium, and long terms along with the evaluation of policies to mitigate these risks. Our model allows decision makers to adjust recruiting and training practices to minimize the risk of not meeting target personnel levels as well as to value retention and reenlistment policies by calculating the expected marginal value of retaining additional service members. Moreover, it allows us to create a penalty function to optimize recruiting and training levels. The outcome is a tool to evaluate and ensure comprehensive force readiness.

Suggested Citation

  • Leo MacDonald & Jomon Aliyas Paul, 2024. "A risk analytics model for strategic workforce planning: readiness of enlisted military personnel," Annals of Operations Research, Springer, vol. 338(1), pages 513-533, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05567-0
    DOI: 10.1007/s10479-023-05567-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05567-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05567-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark E T Horn & Tarek Elgindy & Antonio Gomez-Iglesias, 2016. "Strategic workforce planning for the Australian Defence Force," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(4), pages 664-675, April.
    2. Tim De Feyter & Marie-Anne Guerry & Komarudin, 2017. "Optimizing cost-effectiveness in a stochastic Markov manpower planning system under control by recruitment," Annals of Operations Research, Springer, vol. 253(1), pages 117-131, June.
    3. Robert L. Winkler & Gary M. Roodman & Robert R. Britney, 1972. "The Determination of Partial Moments," Management Science, INFORMS, vol. 19(3), pages 290-296, November.
    4. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    5. Mark Zais & Dan Zhang, 2016. "A Markov chain model of military personnel dynamics," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1863-1885, March.
    6. Oussama Mazari-Abdessameud & Filip Van Utterbeeck & Guy Van Acker & Marie-Anne Guerry, 2020. "Multidimensional military manpower planning based on a career path approach," Operations Management Research, Springer, vol. 13(3), pages 249-263, December.
    7. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    8. Tim Feyter, 2007. "Modeling mixed push and pull promotion flows in Manpower Planning," Annals of Operations Research, Springer, vol. 155(1), pages 25-39, November.
    9. Jie Xu & Edward Huang & Chun-Hung Chen & Loo Hay Lee, 2015. "Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing and Big Data," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turan, Hasan Hüseyin & Jalalvand, Fatemeh & Elsawah, Sondoss & Ryan, Michael J., 2022. "A joint problem of strategic workforce planning and fleet renewal: With an application in defense," European Journal of Operational Research, Elsevier, vol. 296(2), pages 615-634.
    2. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).
    3. Oussama Mazari-Abdessameud & Filip Van Utterbeeck & Guy Van Acker & Marie-Anne Guerry, 2020. "Multidimensional military manpower planning based on a career path approach," Operations Management Research, Springer, vol. 13(3), pages 249-263, December.
    4. Cardoso-Grilo, Teresa & Monteiro, Marta & Oliveira, Mónica Duarte & Amorim-Lopes, Mário & Barbosa-Póvoa, Ana, 2019. "From problem structuring to optimization: A multi-methodological framework to assist the planning of medical training," European Journal of Operational Research, Elsevier, vol. 273(2), pages 662-683.
    5. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    6. Ellen Bockstal & Broos Maenhout, 2019. "A study on the impact of prioritising emergency department arrivals on the patient waiting time," Health Care Management Science, Springer, vol. 22(4), pages 589-614, December.
    7. Jingbo Huang & Jiting Li & Yonghao Du & Yanjie Song & Jian Wu & Feng Yao & Pei Wang, 2023. "Research of a Multi-Level Organization Human Resource Network Optimization Model and an Improved Late Acceptance Hill Climbing Algorithm," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    8. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    9. Saurabh Bansal & James S. Dyer, 2017. "Technical Note—Multivariate Partial-Expectation Results for Exact Solutions of Two-Stage Problems," Operations Research, INFORMS, vol. 65(6), pages 1526-1534, December.
    10. Raimond Mauer & Steffen P. Sebastian, 2002. "Inflation Risk Analysis of European Real Estate Securities," Journal of Real Estate Research, American Real Estate Society, vol. 24(1), pages 47-78.
    11. Jesica Armas & Luis Cadarso & Angel A. Juan & Javier Faulin, 2017. "A multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goals," Annals of Operations Research, Springer, vol. 258(2), pages 825-848, November.
    12. Borgonjon, Tessa & Maenhout, Broos, 2022. "An exact approach for the personnel task rescheduling problem with task retiming," European Journal of Operational Research, Elsevier, vol. 296(2), pages 465-484.
    13. Goel, Asvin & Meisel, Frank, 2013. "Workforce routing and scheduling for electricity network maintenance with downtime minimization," European Journal of Operational Research, Elsevier, vol. 231(1), pages 210-228.
    14. Jianpei Wen & Hanyu Jiang & Jie Song, 2019. "A Stochastic Queueing Model for Capacity Allocation in the Hierarchical Healthcare Delivery System," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-24, February.
    15. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    16. Liu, Zhenya & Lu, Shanglin & Wang, Shixuan, 2021. "Asymmetry, tail risk and time series momentum," International Review of Financial Analysis, Elsevier, vol. 78(C).
    17. Sara Ceschia & Rosita Guido & Andrea Schaerf, 2020. "Solving the static INRC-II nurse rostering problem by simulated annealing based on large neighborhoods," Annals of Operations Research, Springer, vol. 288(1), pages 95-113, May.
    18. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    19. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    20. Hing-Ling Lau, Amy & Lau, Hon-Shiang & Willett, Keith D., 2000. "Demand uncertainty and returns policies for a seasonal product: An alternative model," International Journal of Production Economics, Elsevier, vol. 66(1), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05567-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.