IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i1d10.1007_s10479-023-05567-0.html
   My bibliography  Save this article

A risk analytics model for strategic workforce planning: readiness of enlisted military personnel

Author

Listed:
  • Leo MacDonald

    (Kennesaw State University)

  • Jomon Aliyas Paul

    (Kennesaw State University)

Abstract

We develop a dynamic stochastic model of military workforce planning that incorporates uncertainties about personnel gains and losses across ranks. We then apply it to determine the probability of not meeting required targets as well as the resulting shortages and overages in the short, medium, and long terms along with the evaluation of policies to mitigate these risks. Our model allows decision makers to adjust recruiting and training practices to minimize the risk of not meeting target personnel levels as well as to value retention and reenlistment policies by calculating the expected marginal value of retaining additional service members. Moreover, it allows us to create a penalty function to optimize recruiting and training levels. The outcome is a tool to evaluate and ensure comprehensive force readiness.

Suggested Citation

  • Leo MacDonald & Jomon Aliyas Paul, 2024. "A risk analytics model for strategic workforce planning: readiness of enlisted military personnel," Annals of Operations Research, Springer, vol. 338(1), pages 513-533, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05567-0
    DOI: 10.1007/s10479-023-05567-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05567-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05567-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05567-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.