IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v335y2024i3d10.1007_s10479-021-04343-2.html
   My bibliography  Save this article

Reconfiguration of food grain supply network amidst COVID-19 outbreak: an emerging economy perspective

Author

Listed:
  • Dheeraj Sharma

    (Indian Institute of Management)

  • Amol Singh

    (Indian Institute of Management)

  • Ashwani Kumar

    (Indian Institute of Management)

  • Venkatesh Mani

    (University of Montpellier, Montpellier Research in Management)

  • V. G. Venkatesh

    (EM Normandie Business School, METIS Lab)

Abstract

The procurement of food grains from farmers is one of the biggest challenges under the COVID-19 outbreak due to country-wise lockdowns. The present study aims to reconfigure the existing food grain supply chain network. The study advances the extant literature by proposing a novel mathematical model that considers the government guidelines issued to procure food grains from farmers under the COVID-19 situation. The model includes personal distancing, a key parameter relevant in the COVID-19 crisis, and has remained unaddressed in the existing literature. The proposed model is tested in India. The effect of different parameters like personal distancing cost, carbon emission cost, fixed cost, and transportation cost is also investigated under a given set of procurement centers. Finally, the procurement schedule for each procurement center is generated, which is especially useful for managing its activities and is also helpful to farmers to streamline the process. Results indicate that the proposed model is highly effective under pandemic emergencies like the current COVID-19 crisis. Policymakers and the government will find this model helpful in drafting relevant policies regarding food grain procurement under emergencies such as the COVID-19 outbreak. The distribution segment of the supply chain network is not part of the present research work. In future studies, this part could be then added to the whole of the procurement process, and both procurement and distribution can be assessed together again.

Suggested Citation

  • Dheeraj Sharma & Amol Singh & Ashwani Kumar & Venkatesh Mani & V. G. Venkatesh, 2024. "Reconfiguration of food grain supply network amidst COVID-19 outbreak: an emerging economy perspective," Annals of Operations Research, Springer, vol. 335(3), pages 1177-1207, April.
  • Handle: RePEc:spr:annopr:v:335:y:2024:i:3:d:10.1007_s10479-021-04343-2
    DOI: 10.1007/s10479-021-04343-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04343-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04343-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eskigun, Erdem & Uzsoy, Reha & Preckel, Paul V. & Beaujon, George & Krishnan, Subramanian & Tew, Jeffrey D., 2005. "Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers," European Journal of Operational Research, Elsevier, vol. 165(1), pages 182-206, August.
    2. Supachai Pathumnakul & Chatklao Sanmuang & Nawapak Eua-Anant & Kullapapruk Piewthongngam, 2012. "Locating Sugar Cane Loading Stations Under Variations In Cane Supply," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-17.
    3. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    4. Soysal, M. & Bloemhof-Ruwaard, J.M. & van der Vorst, J.G.A.J., 2014. "Modelling food logistics networks with emission considerations: The case of an international beef supply chain," International Journal of Production Economics, Elsevier, vol. 152(C), pages 57-70.
    5. Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
    6. Validi, Sahar & Bhattacharya, Arijit & Byrne, P.J., 2014. "A case analysis of a sustainable food supply chain distribution system—A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 152(C), pages 71-87.
    7. Stella Despoudi & Grammatoula Papaioannou & George Saridakis & Samir Dani, 2018. "Does collaboration pay in agricultural supply chain? An empirical approach," International Journal of Production Research, Taylor & Francis Journals, vol. 56(13), pages 4396-4417, July.
    8. Kevin P. Scheibe & Jennifer Blackhurst, 2018. "Supply chain disruption propagation: a systemic risk and normal accident theory perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 43-59, January.
    9. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    10. D. G. Mogale & Abhijeet Ghadge & Sri Krishna Kumar & Manoj Kumar Tiwari, 2020. "Modelling supply chain network for procurement of food grains in India," International Journal of Production Research, Taylor & Francis Journals, vol. 58(21), pages 6493-6512, November.
    11. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    12. Lohithaksha M. Maiyar & Jitesh J. Thakkar, 2020. "Robust optimisation of sustainable food grain transportation with uncertain supply and intentional disruptions," International Journal of Production Research, Taylor & Francis Journals, vol. 58(18), pages 5651-5675, September.
    13. Ana Esteso & M.M.E. Alemany & Angel Ortiz, 2018. "Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models," International Journal of Production Research, Taylor & Francis Journals, vol. 56(13), pages 4418-4446, July.
    14. Amorim, Pedro & Curcio, Eduardo & Almada-Lobo, Bernardo & Barbosa-Póvoa, Ana P.F.D. & Grossmann, Ignacio E., 2016. "Supplier selection in the processed food industry under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(3), pages 801-814.
    15. Ge, Houtian & Gray, Richard & Nolan, James, 2015. "Agricultural supply chain optimization and complexity: A comparison of analytic vs simulated solutions and policies," International Journal of Production Economics, Elsevier, vol. 159(C), pages 208-220.
    16. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    17. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. G. Mogale & Sri Krishna Kumar & Manoj Kumar Tiwari, 2020. "Green food supply chain design considering risk and post-harvest losses: a case study," Annals of Operations Research, Springer, vol. 295(1), pages 257-284, December.
    2. Volha Yakavenka & Ioannis Mallidis & Dimitrios Vlachos & Eleftherios Iakovou & Zafeiriou Eleni, 2020. "Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products," Annals of Operations Research, Springer, vol. 294(1), pages 593-621, November.
    3. Mogale, D.G. & Kumar, Mukesh & Kumar, Sri Krishna & Tiwari, Manoj Kumar, 2018. "Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 40-69.
    4. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    5. Mohebalizadehgashti, Fatemeh & Zolfagharinia, Hossein & Amin, Saman Hassanzadeh, 2020. "Designing a green meat supply chain network: A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 219(C), pages 312-327.
    6. Najafi, Mehdi & Zolfagharinia, Hossein, 2024. "A Multi-objective integrated approach to address sustainability in a meat supply chain," Omega, Elsevier, vol. 124(C).
    7. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    8. Lejarza, Fernando & Pistikopoulos, Ioannis & Baldea, Michael, 2021. "A scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study," International Journal of Production Economics, Elsevier, vol. 240(C).
    9. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    10. Morteza Yazdani & Dragan Pamucar & Prasenjit Chatterjee & Ali Ebadi Torkayesh, 2022. "“A multi-tier sustainable food supplier selection model under uncertainty”," Operations Management Research, Springer, vol. 15(1), pages 116-145, June.
    11. Ge, Houtian & Goetz, Stephan J. & Cleary, Rebecca & Yi, Jing & Gómez, Miguel I., 2022. "Facility locations in the fresh produce supply chain: An integration of optimization and empirical methods," International Journal of Production Economics, Elsevier, vol. 249(C).
    12. Aleksander Banasik & Argyris Kanellopoulos & G. D. H. Claassen & Jacqueline M. Bloemhof-Ruwaard & Jack G. A. J. Vorst, 2017. "Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization," Annals of Operations Research, Springer, vol. 250(2), pages 341-362, March.
    13. Aleksander Banasik & Jacqueline M. Bloemhof-Ruwaard & Argyris Kanellopoulos & G. D. H. Claassen & Jack G. A. J. Vorst, 2018. "Multi-criteria decision making approaches for green supply chains: a review," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 366-396, September.
    14. De, Arijit & Gorton, Matthew & Hubbard, Carmen & Aditjandra, Paulus, 2022. "Optimization model for sustainable food supply chains: An application to Norwegian salmon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    15. A. Mohammed, 2020. "Towards a sustainable assessment of suppliers: an integrated fuzzy TOPSIS-possibilistic multi-objective approach," Annals of Operations Research, Springer, vol. 293(2), pages 639-668, October.
    16. Jianli Luo & Chen Ji & Chunxiao Qiu & Fu Jia, 2018. "Agri-Food Supply Chain Management: Bibliometric and Content Analyses," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    17. Yan Fang & Yiping Jiang & Lijun Sun & Xingxing Han, 2018. "Design of Green Cold Chain Networks for Imported Fresh Agri-Products in Belt and Road Development," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    18. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes & Tan Yigitcanlar, 2021. "Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review," Sustainability, MDPI, vol. 13(24), pages 1-31, December.
    19. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    20. Wang, Haiyan & Zhan, Sha-lei & Ng, Chi To & Cheng, T.C.E., 2020. "Coordinating quality, time, and carbon emissions in perishable food production: A new technology integrating GERT and the Bayesian approach," International Journal of Production Economics, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:335:y:2024:i:3:d:10.1007_s10479-021-04343-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.