IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i1d10.1007_s10479-022-04964-1.html
   My bibliography  Save this article

An ensemble method of the machine learning to prognosticate the gastric cancer

Author

Listed:
  • Hirad Baradaran Rezaei

    (Amirkabir University of Technology)

  • Alireza Amjadian

    (Kharazmi University)

  • Mohammad Vahid Sebt

    (Kharazmi University)

  • Reza Askari

    (Kharazmi University)

  • Abolfazl Gharaei

    (Kharazmi University)

Abstract

Gastric Cancer is the most common malignancy of the digestive tract, which is the third leading cause of cancer-related mortality worldwide. The early prognosis methods, especially Machine Learning (ML)-based approaches are one of the main strategies against GC, which have become a necessity to identify and prognosticate the factors that affect the GC. They enable the specialists to accelerate the subsequent clinical management of patients, who suffer from the GC. This paper aims at creating an Ensemble Method inspired from ML to predict the most significant factors of the GC occurrence. The main objective of this research is to predict the probabilities of the GC occurrence and its associated deaths. To achieve this goal, the created EM benefits from some ML-based methods, including Least Absolute Shrinkage and Selection Operator (LASSO)/Ridge Regression, Elastic Net, Logistic Regression (LR), Random Forest (RF), Gradient Boosting Decision Trees (GBDTs), and Deep Neural Network (DNN). The purpose of the provided EM is to lessen the prediction errors for the large number of the patients’ features. The main novelties of this research include: (i) A sequential EM created by a Stacking method to predict the probability of the GC and associated deaths; (ii) Benefiting from the significance level to make an accurate prediction; (iii) Employing two Chi-square tests to select the influent features; (iv) Tuning the parameters of the applied ML models to avoid over-fitting and intensifying the errors; (v) Applying different kinds of the regression methods to treat hyper-dimension cases; (vi) A new model for weighting the applied ML models. The outcomes of the implementation of the created EM in seven pioneer hospitals in the field of GC show that the designed EM generates more precise predictions with an accuracy of 97.9% and 76.3% to predict the GC and its associated deaths, respectively. Moreover, the obtained results from the Area Under Curve (AUC) validates and confirms the capability of the created EM to predict the probability of the GC and its related deaths with an accuracy of 98% and 90% to predict the GC and its associated deaths, respectively.

Suggested Citation

  • Hirad Baradaran Rezaei & Alireza Amjadian & Mohammad Vahid Sebt & Reza Askari & Abolfazl Gharaei, 2023. "An ensemble method of the machine learning to prognosticate the gastric cancer," Annals of Operations Research, Springer, vol. 328(1), pages 151-192, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04964-1
    DOI: 10.1007/s10479-022-04964-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04964-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04964-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mizuho Nishio & Mitsuo Nishizawa & Osamu Sugiyama & Ryosuke Kojima & Masahiro Yakami & Tomohiro Kuroda & Kaori Togashi, 2018. "Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-13, April.
    2. Ata Allah Taleizadeh & Aria Zaker Safaei & Arijit Bhattacharya & Alireza Amjadian, 2022. "Online peer-to-peer lending platform and supply chain finance decisions and strategies," Annals of Operations Research, Springer, vol. 315(1), pages 397-427, August.
    3. Abraham Pouliakis & Periklis Foukas & Konstantinos Triantafyllou & Niki Margari & Efrossyni Karakitsou & Vasileia Damaskou & Nektarios Koufopoulos & Tsakiraki Zoi & Martha Nifora & Alina-Roxani Goulou, 2020. "Machine Learning for Gastric Cancer Detection: A Logistic Regression Approach," International Journal of Reliable and Quality E-Healthcare (IJRQEH), IGI Global, vol. 9(2), pages 48-58, April.
    4. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    5. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    3. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    4. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    7. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    9. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    10. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    13. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    14. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    15. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    16. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    17. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    18. Moharil Janhavi & May Paul & Gaile Daniel P. & Blair Rachael Hageman, 2016. "Belief propagation in genotype-phenotype networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 39-53, March.
    19. Won Hee Lee, 2023. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function," Mathematics, MDPI, vol. 11(5), pages 1-15, March.
    20. Mohammad Amin Amani & Mohammad Mahdi Nasiri, 2023. "A novel cross docking system for distributing the perishable products considering preemption: a machine learning approach," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-32, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04964-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.