IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v328y2023i1d10.1007_s10479-022-04926-7.html
   My bibliography  Save this article

A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization

Author

Listed:
  • Sabah Bushaj

    (School of Business and Economics, SUNY Plattsburgh)

  • Xuecheng Yin

    (Yale School of Public Health)

  • Arjeta Beqiri

    (School of Business and Economics, SUNY Plattsburgh)

  • Donald Andrews

    (School of Natural Sciences)

  • İ. Esra Büyüktahtakın

    (Grado Department of Industrial and Systems Engineering, Virginia Tech)

Abstract

In this paper, we address the controversies of epidemic control planning by developing a novel Simulation-Deep Reinforcement Learning (SiRL) model. COVID-19 reminded constituents over the world that government decision-making could change their lives. During the COVID-19 pandemic, governments were concerned with reducing fatalities as the virus spread but at the same time also maintaining a flowing economy. In this paper, we address epidemic decision-making regarding the interventions necessary given of the epidemic based on the purpose of the decision-maker. Further, we intend to compare different vaccination strategies, such as age-based and random vaccination, to shine a light on who should get priority in the vaccination process. To address these issues, we propose a simulation-deep reinforcement learning (DRL) framework. This framework is composed of an agent-based simulation model and a governor DRL agent that can enforce interventions in the agent-based simulation environment. Computational results show that our DRL agent can learn effective strategies and suggest optimal actions given a specific epidemic situation based on a multi-objective reward structure. We compare our DRL agent’s decisions to government interventions at different periods of time during the COVID-19 pandemic. Our results suggest that more could have been done to control the epidemic. In addition, if a random vaccination strategy that allows super-spreaders to get vaccinated early were used, infections would have been reduced by 32% at the expense of 4% more deaths. We also show that a behavioral change of fully quarantining 10% of the risky individuals and using a random vaccination strategy leads to a reduction of the death toll by 14% and 27% compared to the age-based vaccination strategy that was implemented and the New Jersey reported data, respectively. We have also demonstrated the flexibility of our approach to be applied to other locations by validating and applying our model to the COVID-19 case in the state of Kansas.

Suggested Citation

  • Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
  • Handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04926-7
    DOI: 10.1007/s10479-022-04926-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04926-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04926-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katelyn M Gostic & Lauren McGough & Edward B Baskerville & Sam Abbott & Keya Joshi & Christine Tedijanto & Rebecca Kahn & Rene Niehus & James A Hay & Pablo M De Salazar & Joel Hellewell & Sophie Meaki, 2020. "Practical considerations for measuring the effective reproductive number, Rt," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
    2. Ashraf, Badar Nadeem, 2020. "Economic impact of government interventions during the COVID-19 pandemic: International evidence from financial markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    3. Sanjay Mehrotra & Hamed Rahimian & Masoud Barah & Fengqiao Luo & Karolina Schantz, 2020. "A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 303-320, August.
    4. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    5. Onal, Sevilay & Akhundov, Najmaddin & Büyüktahtakın, İ. Esra & Smith, Jennifer & Houseman, Gregory R., 2020. "An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader," International Journal of Production Economics, Elsevier, vol. 222(C).
    6. Sigala, Marianna, 2020. "Tourism and COVID-19: Impacts and implications for advancing and resetting industry and research," Journal of Business Research, Elsevier, vol. 117(C), pages 312-321.
    7. Bell, David N.F. & Blanchflower, David G., 2020. "Us And Uk Labour Markets Before And During The Covid-19 Crash," National Institute Economic Review, National Institute of Economic and Social Research, vol. 252, pages 52-69, May.
    8. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    9. Bushaj, Sabah & Büyüktahtakın, İ. Esra & Haight, Robert G., 2022. "Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1094-1110.
    10. Navid Ghaffarzadegan & Hazhir Rahmandad, 2020. "Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 101-129, January.
    11. Joshua M. Epstein, 2009. "Modelling to contain pandemics," Nature, Nature, vol. 460(7256), pages 687-687, August.
    12. Higazy, M., 2020. "Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    14. Hazhir Rahmandad & Tse Yang Lim & John Sterman, 2021. "Behavioral dynamics of COVID‐19: estimating underreporting, multiple waves, and adherence fatigue across 92 nations," System Dynamics Review, System Dynamics Society, vol. 37(1), pages 5-31, January.
    15. Xuecheng Yin & İ. E. Büyüktahtakın, 2021. "A multi-stage stochastic programming approach to epidemic resource allocation with equity considerations," Health Care Management Science, Springer, vol. 24(3), pages 597-622, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilmaz, Dogacan & Büyüktahtakın, İ. Esra, 2024. "An expandable machine learning-optimization framework to sequential decision-making," European Journal of Operational Research, Elsevier, vol. 314(1), pages 280-296.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bushaj, Sabah & Büyüktahtakın, İ. Esra & Haight, Robert G., 2022. "Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1094-1110.
    2. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    4. Aleksandra Lapko & Ewa Hacia & Lovorko Lucic, 2021. "Nautical Tourism in Croatia and the COVID-19 Pandemic," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 308-319.
    5. Yin, Xuecheng & Büyüktahtakın, İ. Esra & Patel, Bhumi P., 2023. "COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk," European Journal of Operational Research, Elsevier, vol. 304(1), pages 255-275.
    6. Liu, Ming & Wu, Jiani & Zhang, Shuhua & Liang, Jing, 2023. "Cyanobacterial blooms management: A modified optimization model for interdisciplinary research," Ecological Modelling, Elsevier, vol. 484(C).
    7. Duggan, Jim & Andrade, Jair & Murphy, Thomas Brendan & Gleeson, James P. & Walsh, Cathal & Nolan, Philip, 2024. "An age-cohort simulation model for generating COVID-19 scenarios: A study from Ireland's pandemic response," European Journal of Operational Research, Elsevier, vol. 313(1), pages 343-358.
    8. Liu, Jia & Bai, Jinyu & Wu, Desheng, 2021. "Medical supplies scheduling in major public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    9. Ramani, Vinay & Ghosh, Debabrata & Sodhi, ManMohan S., 2022. "Understanding systemic disruption from the Covid-19-induced semiconductor shortage for the auto industry," Omega, Elsevier, vol. 113(C).
    10. Vahdani, Behnam & Mohammadi, Mehrdad & Thevenin, Simon & Meyer, Patrick & Dolgui, Alexandre, 2023. "Production-sharing of critical resources with dynamic demand under pandemic situation: The COVID-19 pandemic," Omega, Elsevier, vol. 120(C).
    11. Balezentis, Tomas & Zickiene, Agne & Volkov, Artiom & Streimikiene, Dalia & Morkunas, Mangirdas & Dabkiene, Vida & Ribasauskiene, Erika, 2023. "Measures for the viable agri-food supply chains: A multi-criteria approach," Journal of Business Research, Elsevier, vol. 155(PA).
    12. Miraj Ahmed Bhuiyan & Tiziana Crovella & Annarita Paiano & Helena Alves, 2021. "A Review of Research on Tourism Industry, Economic Crisis and Mitigation Process of the Loss: Analysis on Pre, During and Post Pandemic Situation," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    13. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2023. "Design of control strategies to help prevent the spread of COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 219-238.
    14. G.J. Melman & A.K. Parlikad & E.A.B. Cameron, 2021. "Balancing scarce hospital resources during the COVID-19 pandemic using discrete-event simulation," Health Care Management Science, Springer, vol. 24(2), pages 356-374, June.
    15. Ali Zackery & Joseph Amankwah-Amoah & Zahra Heidari Darani & Shiva Ghasemi, 2022. "COVID-19 Research in Business and Management: A Review and Future Research Agenda," Sustainability, MDPI, vol. 14(16), pages 1-32, August.
    16. Garaus, Marion & Hudáková, Melánia, 2022. "The impact of the COVID-19 pandemic on tourists’ air travel intentions: The role of perceived health risk and trust in the airline," Journal of Air Transport Management, Elsevier, vol. 103(C).
    17. Gheorghe Cristian Popescu & Monica Popescu, 2022. "COVID-19 pandemic and agriculture in Romania: effects on agricultural systems, compliance with restrictions and relations with authorities," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(2), pages 557-567, April.
    18. Philipp Wassler & Giacomo Del Chiappa & Thi Hong Hai Nguyen & Giancarlo Fedeli & Nigel L. Williams, 2022. "Increasing vaccination intention in pandemic times: a social marketing perspective," Italian Journal of Marketing, Springer, vol. 2022(1), pages 37-58, March.
    19. Mahata, Ajit & Rai, Anish & Nurujjaman, Md. & Prakash, Om, 2021. "Modeling and analysis of the effect of COVID-19 on the stock price: V and L-shape recovery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    20. László Könnyid & Zsuzsanna Váradi & Zsombor Nagy & Noémi Ilyés & Orsolya H. Horváth, 2022. "The Changes in the Demographic Characteristics and Spatial Structure of Tourism Demand in the West Balaton Region’s Spa Cities," Sustainability, MDPI, vol. 14(17), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04926-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.