IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v259y2017i1d10.1007_s10479-016-2190-8.html
   My bibliography  Save this article

Performance evaluation of the Taiwan railway administration

Author

Listed:
  • Bo Hsiao

    (Chang Jung Christian University)

  • LihChyun Shu

    (National Cheng Kung University)

  • Ming-Miin Yu

    (National Taiwan Ocean University)

  • Li-Kang Shen

    (National Taiwan Ocean University)

  • Ding-Jiun Wang

    (National Cheng Kung University)

Abstract

This study aims to investigate the effects of centralized allocation and optimization of railway resources on overall operational efficiency of the railway industry. Its results are intended to help Taiwan railway industry in resource allocation and reduction of organization resistance caused by resource deployment in Taiwan. For this purpose, this study proposes and divides resource reallocation into long-, middle-, and short-term plans, with three resource adjustment programs. These programs consider different geographical ranges and resource conditions of personnel and equipment in resource allocation by using a two-phase centralized data envelopment analysis. Conducted in 2011, the Taiwan railway data analysis indicated that high overall output that was attributed to efficient allocation of resources induced large-scale organizational changes and adjustments (such as staff reduction) in the railway industry. These changes resulted in widespread organization resistance. Nonetheless, this process enabled the railway industry in Taiwan to achieve balance between output and organization resistance under different environments efficiently.

Suggested Citation

  • Bo Hsiao & LihChyun Shu & Ming-Miin Yu & Li-Kang Shen & Ding-Jiun Wang, 2017. "Performance evaluation of the Taiwan railway administration," Annals of Operations Research, Springer, vol. 259(1), pages 119-156, December.
  • Handle: RePEc:spr:annopr:v:259:y:2017:i:1:d:10.1007_s10479-016-2190-8
    DOI: 10.1007/s10479-016-2190-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2190-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2190-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Lei, 2013. "A generalized DEA model for centralized resource allocation," European Journal of Operational Research, Elsevier, vol. 228(2), pages 405-412.
    2. Gathon, H. -J. & Pestieau, P., 1995. "Decomposing efficiency into its managerial and its regulatory components: The case of European railways," European Journal of Operational Research, Elsevier, vol. 80(3), pages 500-507, February.
    3. HOSSEINZADEH LOTFI, Farhad & HATAMI-MARBINI, Adel & AGRELL, Per & GHOLAMI, Kobra, 2013. "Centralized resource reduction and target setting under DEA control," LIDAM Discussion Papers CORE 2013005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Yu, Ming-Miin, 2008. "Assessing the technical efficiency, service effectiveness, and technical effectiveness of the world's railways through NDEA analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1283-1294, December.
    5. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    6. Cantos, Pedro & Maudos, Joaqui­n, 2001. "Regulation and efficiency: the case of European railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(5), pages 459-472, June.
    7. Yu, Ming-Miin & Chern, Ching-Chin & Hsiao, Bo, 2013. "Human resource rightsizing using centralized data envelopment analysis: Evidence from Taiwan's Airports," Omega, Elsevier, vol. 41(1), pages 119-130.
    8. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    9. Asmild, Mette & Paradi, Joseph C. & Pastor, Jesus T., 2009. "Centralized resource allocation BCC models," Omega, Elsevier, vol. 37(1), pages 40-49, February.
    10. Lozano, S. & Villa, G. & Adenso-Díaz, B., 2004. "Centralised target setting for regional recycling operations using DEA," Omega, Elsevier, vol. 32(2), pages 101-110, April.
    11. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    12. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    13. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    14. Jitsuzumi, Toshiya & Nakamura, Akihiro, 2010. "Causes of inefficiency in Japanese railways: Application of DEA for managers and policymakers," Socio-Economic Planning Sciences, Elsevier, vol. 44(3), pages 161-173, September.
    15. Lei Fang, 2016. "Centralized resource allocation DEA models based on revenue efficiency under limited information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(7), pages 945-952, July.
    16. HATAMI-MARBINI, Adel & TAVANA, Madjid & AGRELL, Per J & HOSSEINZADEH LOTFI, Farhad, 2015. "A common-weights DEA model for centralized resource reduction and target setting," LIDAM Reprints CORE 2642, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esther Jose & Puneet Agarwal & Jun Zhuang & Jose Swaminathan, 2023. "A multi-criteria decision making approach to evaluating the performance of Indian railway zones," Annals of Operations Research, Springer, vol. 325(2), pages 1133-1168, June.
    2. Jorge Antunes & Goodness C. Aye & Rangan Gupta & Peter Wanke & Yong Tan, 2020. "Endogenous Long-Term Productivity Performance in Advanced Countries: A Novel Two-Dimensional Fuzzy-Monte Carlo Approach," Working Papers 2020111, University of Pretoria, Department of Economics.
    3. Lozano, Sebastián & Contreras, Ignacio, 2022. "Centralised resource allocation using Lexicographic Goal Programming. Application to the Spanish public university system," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    4. Goutam Sutar & Rakesh Arrawatia & Krantiraditya Dhalmahapatra & Ashish Garg & Deepak Kumar, 2023. "Performance assessment of Dairy Cooperative Societies (DCSs): an AHP based composite index approach," Annals of Operations Research, Springer, vol. 326(2), pages 751-782, July.
    5. Niu, Yanliang & Li, Xin & Zhang, Jiangxue & Deng, Xiaopeng & Chang, Yuan, 2023. "Efficiency of railway transport: A comparative analysis for 16 countries," Transport Policy, Elsevier, vol. 141(C), pages 42-53.
    6. Mahmud Akhter Shareef & Yogesh K. Dwivedi & Rafeed Mahmud & Angela Wright & Mohammad Mahboob Rahman & Hatice Kizgin & Nripendra P. Rana, 2019. "Disaster management in Bangladesh: developing an effective emergency supply chain network," Annals of Operations Research, Springer, vol. 283(1), pages 1463-1487, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    2. Menghan Chen & Sheng Ang & Lijing Jiang & Feng Yang, 2020. "Centralized resource allocation based on cross-evaluation considering organizational objective and individual preferences," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 529-565, June.
    3. Arocena, Pablo & Cabasés, Fermín & Pascual, Pedro, 2022. "A centralized directional distance model for efficient and horizontally equitable grants allocation to local governments," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    4. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
    5. Yu, Ming-Miin & Chen, Li-Hsueh, 2016. "Centralized resource allocation with emission resistance in a two-stage production system: Evidence from a Taiwan’s container shipping company," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 650-671.
    6. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    7. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    8. Hien Thu Pham & Antonio Peyrache, 2015. "Industry Inefficiency Measures: A Unifying Approximation Proposition," CEPA Working Papers Series WP102015, School of Economics, University of Queensland, Australia.
    9. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    10. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    11. Adel Hatami-Marbini & Zahra Ghelej Beigi & Hirofumi Fukuyama & Kobra Gholami, 2015. "Modeling Centralized Resources Allocation and Target Setting in Imprecise Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1189-1213, November.
    12. Peyrache, Antonio, 2015. "Cost constrained industry inefficiency," European Journal of Operational Research, Elsevier, vol. 247(3), pages 996-1002.
    13. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    14. Mallikarjun, Sreekanth & Lewis, Herbert F. & Sexton, Thomas R., 2014. "Operational performance of U.S. public rail transit and implications for public policy," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 74-88.
    15. Contreras, I. & Lozano, S., 2020. "Allocating additional resources to public universities. A DEA bargaining approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    16. Ane Elixabete Ripoll-Zarraga & Sebastián Lozano, 2020. "A centralised DEA approach to resource reallocation in Spanish airports," Annals of Operations Research, Springer, vol. 288(2), pages 701-732, May.
    17. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    18. Jorge Antunes & Goodness C. Aye & Rangan Gupta & Peter Wanke & Yong Tan, 2020. "Endogenous Long-Term Productivity Performance in Advanced Countries: A Novel Two-Dimensional Fuzzy-Monte Carlo Approach," Working Papers 2020111, University of Pretoria, Department of Economics.
    19. Xiong, Xi & Yang, Guo-liang & Zhou, De-qun & Wang, Zi-long, 2022. "How to allocate multi-period research resources? Centralized resource allocation for public universities in China using a parallel DEA-based approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    20. Bai, Xue-jie & Zeng, Jin & Chiu, Yung-Ho, 2019. "Pre-evaluating efficiency gains from potential mergers and acquisitions based on the resampling DEA approach: Evidence from China's railway sector," Transport Policy, Elsevier, vol. 76(C), pages 46-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:259:y:2017:i:1:d:10.1007_s10479-016-2190-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.