IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i05p981-1015_00.html
   My bibliography  Save this article

Hidden Markov Structures For Dynamic Copulae

Author

Listed:
  • Härdle, Wolfgang Karl
  • Okhrin, Ostap
  • Wang, Weining

Abstract

Understanding the time series dynamics of a multi-dimensional dependency structure is a challenging task. Multivariate covariance driven Gaussian or mixed normal time varying models have only a limited ability to capture important features of the data such as heavy tails, asymmetry, and nonlinear dependencies. The present paper tackles this problem by proposing and analyzing a hidden Markov model (HMM) for hierarchical Archimedean copulae (HAC). The HAC constitute a wide class of models for multi-dimensional dependencies, and HMM is a statistical technique for describing regime switching dynamics. HMM applied to HAC flexibly models multivariate dimensional non-Gaussian time series.We apply the expectation maximization (EM) algorithm for parameter estimation. Consistency results for both parameters and HAC structures are established in an HMM framework. The model is calibrated to exchange rate data with a VaR application. This example is motivated by a local adaptive analysis that yields a time varying HAC model. We compare its forecasting performance with that of other classical dynamic models. In another, second, application, we model a rainfall process. This task is of particular theoretical and practical interest because of the specific structure and required untypical treatment of precipitation data.

Suggested Citation

  • Härdle, Wolfgang Karl & Okhrin, Ostap & Wang, Weining, 2015. "Hidden Markov Structures For Dynamic Copulae," Econometric Theory, Cambridge University Press, vol. 31(5), pages 981-1015, October.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:05:p:981-1015_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000607/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marius Ötting & Roland Langrock & Antonello Maruotti, 2023. "A copula-based multivariate hidden Markov model for modelling momentum in football," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 9-27, March.
    2. Marc S. Paolella, 2017. "The Univariate Collapsing Method for Portfolio Optimization," Econometrics, MDPI, vol. 5(2), pages 1-33, May.
    3. Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
    4. Shih-Feng Huang & Hsin-Han Chiang & Yu-Jun Lin, 2021. "A network autoregressive model with GARCH effects and its applications," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-18, July.
    5. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    6. Fritzsch, Simon & Timphus, Maike & Weiß, Gregor, 2024. "Marginals versus copulas: Which account for more model risk in multivariate risk forecasting?," Journal of Banking & Finance, Elsevier, vol. 158(C).
    7. Marius Ötting & Dimitris Karlis, 2023. "Football tracking data: a copula-based hidden Markov model for classification of tactics in football," Annals of Operations Research, Springer, vol. 325(1), pages 167-183, June.
    8. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    9. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    10. Costanza Naguib & Patrick Gagliardini, 2023. "A Semi-nonparametric Copula Model for Earnings Mobility," Diskussionsschriften dp2302, Universitaet Bern, Departement Volkswirtschaft.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:05:p:981-1015_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.