IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v309y2022i2d10.1007_s10479-020-03780-9.html
   My bibliography  Save this article

DVRP with limited supply and variable neighborhood region in refined oil distribution

Author

Listed:
  • Xiaofeng Xu

    (China University of Petroleum)

  • Ziru Lin

    (China University of Petroleum)

  • Jing Zhu

    (Southwestern University of Finance and Economics)

Abstract

Limited supply can be an emergent issue in refined oil distribution, which may increase operating cost and decrease gasoline station satisfaction with shortage. Hence, how to devise an optimal distribution scheme is the central problem for oil distribution companies. The main problem with limited supply involves: (I) depicting the dynamic efforts on vehicle routing driven by the demand and priority of gasoline stations, and (II) incorporating the efforts into variable distribution region division associated with oil depots. In this paper, we propose a multi-objective optimization model for dynamic vehicle routing problem with limited supply in oil distribution with variable neighborhood region. First, a preliminary multi-stage model for dynamic vehicle routing problem is designed, which takes operating cost, gasoline station satisfaction and priority into consider in the setting of limited supply. Based on the preliminary model, a variable neighborhood region division model is presented for oil depot supply and tanker delivery, in light of Fuzzy C-means algorithm and justifiable granularity principle. Finally, the experimental results show that the dynamic vehicle programming model with variable neighborhood performs better than other comparable scenarios at cost savings and satisfaction improvement.

Suggested Citation

  • Xiaofeng Xu & Ziru Lin & Jing Zhu, 2022. "DVRP with limited supply and variable neighborhood region in refined oil distribution," Annals of Operations Research, Springer, vol. 309(2), pages 663-687, February.
  • Handle: RePEc:spr:annopr:v:309:y:2022:i:2:d:10.1007_s10479-020-03780-9
    DOI: 10.1007/s10479-020-03780-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03780-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03780-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Relvas, Susana & Boschetto Magatão, Suelen N. & Barbosa-Póvoa, Ana Paula F.D. & Neves, Flávio, 2013. "Integrated scheduling and inventory management of an oil products distribution system," Omega, Elsevier, vol. 41(6), pages 955-968.
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunqi Jiang & Huaqing Zhang & Kai Zhang & Jian Wang & Shiti Cui & Jianfa Han & Liming Zhang & Jun Yao, 2022. "Reservoir Characterization and Productivity Forecast Based on Knowledge Interaction Neural Network," Mathematics, MDPI, vol. 10(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reyes, Damián & Erera, Alan L. & Savelsbergh, Martin W.P., 2018. "Complexity of routing problems with release dates and deadlines," European Journal of Operational Research, Elsevier, vol. 266(1), pages 29-34.
    2. Dessouky, Maged M & Hu, Shichun, 2021. "Dynamic Routing for Ride-Sharing," Institute of Transportation Studies, Working Paper Series qt6qq8r7hz, Institute of Transportation Studies, UC Davis.
    3. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "On-demand bus routing problem with dynamic stochastic requests and prepositioning," Working Papers 2022004, University of Antwerp, Faculty of Business and Economics.
    4. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    5. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Rubio, Francisco & Llopis-Albert, Carlos & Valero, Francisco, 2021. "Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    8. Cordeau, Jean-François & Dell’Amico, Mauro & Falavigna, Simone & Iori, Manuel, 2015. "A rolling horizon algorithm for auto-carrier transportation," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 68-80.
    9. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    10. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    11. John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
    12. Yuxin Liu & Zihang Qin & Jin Liu, 2023. "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    13. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    14. Hyland, Michael & Mahmassani, Hani S., 2020. "Operational benefits and challenges of shared-ride automated mobility-on-demand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 251-270.
    15. Martijn Merwe & Melih Ozlen & John W. Hearne & James P. Minas, 2017. "Dynamic rerouting of vehicles during cooperative wildfire response operations," Annals of Operations Research, Springer, vol. 254(1), pages 467-480, July.
    16. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    17. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    18. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    19. Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
    20. Lian, Ying & Lucas, Flavien & Sörensen, Kenneth, 2024. "Prepositioning can improve the performance of a dynamic stochastic on-demand public bus system," European Journal of Operational Research, Elsevier, vol. 312(1), pages 338-356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:309:y:2022:i:2:d:10.1007_s10479-020-03780-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.