IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4745-d1286488.html
   My bibliography  Save this article

Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation

Author

Listed:
  • Hongyu He

    (School of Economics, Shenyang University, Shenyang 110096, China
    Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China)

  • Yanzhi Zhao

    (School of Economics, Shenyang University, Shenyang 110096, China)

  • Xiaojun Ma

    (School of Economics, Shenyang University, Shenyang 110096, China
    School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China)

  • Zheng-Guo Lv

    (School of Science, Shenyang Aerospace University, Shenyang 110136, China)

  • Ji-Bo Wang

    (School of Science, Shenyang Aerospace University, Shenyang 110136, China)

Abstract

Green scheduling that aims to enhance efficiency by optimizing resource allocation and job sequencing concurrently has gained growing academic attention. To tackle such problems with the consideration of scheduling and resource allocation, this paper considers a single-machine group scheduling problem with common/slack due-date assignment and a controllable processing time. The objective is to decide the optimized schedule of the group/job sequence, resource allocation, and due-date assignment. To solve the generalized case, this paper proves several optimal properties and presents a branch-and-bound algorithm and heuristic algorithms. Numerical experiments show that the branch-and-bound algorithm is efficient and the heuristic algorithm developed based on the analytical properties outruns the tabu search.

Suggested Citation

  • Hongyu He & Yanzhi Zhao & Xiaojun Ma & Zheng-Guo Lv & Ji-Bo Wang, 2023. "Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4745-:d:1286488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Shisheng & Ng, C.T. & Yuan, Jinjiang, 2011. "Group scheduling and due date assignment on a single machine," International Journal of Production Economics, Elsevier, vol. 130(2), pages 230-235, April.
    2. Yunqiang Yin & Du‐Juan Wang & Chin‐Chia Wu & T.C.E. Cheng, 2016. "CON/SLK due date assignment and scheduling on a single machine with two agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 416-429, August.
    3. Yongjian Yang & Guangqiang Yin & Chunyu Wang & Yunqiang Yin, 2022. "Due date assignment and two-agent scheduling under multitasking environment," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2207-2223, November.
    4. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    5. Foumani, Mehdi & Smith-Miles, Kate, 2019. "The impact of various carbon reduction policies on green flowshop scheduling," Applied Energy, Elsevier, vol. 249(C), pages 300-315.
    6. Mohammed A. Noman & Moath Alatefi & Abdulrahman M. Al-Ahmari & Tamer Ali, 2021. "Tabu Search Algorithm Based on Lower Bound and Exact Algorithm Solutions for Minimizing the Makespan in Non-Identical Parallel Machines Scheduling," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, December.
    7. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    8. Yunqiang Yin & Yongjian Yang & Dujuan Wang & T.C.E. Cheng & Chin‐Chia Wu, 2018. "Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 393-409, August.
    9. Scott Webster & Kenneth R. Baker, 1995. "Scheduling Groups of Jobs on a Single Machine," Operations Research, INFORMS, vol. 43(4), pages 692-703, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Pan & Xinyu Sun & Ji-Bo Wang & Li-Han Zhang & Dan-Yang Lv, 2023. "Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs," Journal of Combinatorial Optimization, Springer, vol. 45(4), pages 1-16, May.
    2. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    3. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    4. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    5. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    6. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    7. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    8. X Wang & L Tang, 2011. "Scheduling a single machine with multiple job processing ability to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(8), pages 1555-1565, August.
    9. Baruch Mor & Gur Mosheiov, 2021. "Minmax due-date assignment on a two-machine flowshop," Annals of Operations Research, Springer, vol. 305(1), pages 191-209, October.
    10. Chen-Yang Cheng & Shih-Wei Lin & Pourya Pourhejazy & Kuo-Ching Ying & Yu-Zhe Lin, 2021. "No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    11. Dujuan Wang & Yugang Yu & Huaxin Qiu & Yunqiang Yin & T. C. E. Cheng, 2020. "Two‐agent scheduling with linear resource‐dependent processing times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 573-591, October.
    12. Amin-Naseri, Mohammad Reza & Beheshti-Nia, Mohammad Ali, 2009. "Hybrid flow shop scheduling with parallel batching," International Journal of Production Economics, Elsevier, vol. 117(1), pages 185-196, January.
    13. Byung-Cheon Choi & Myoung-Ju Park, 2020. "Scheduling two projects with controllable processing times in a single-machine environment," Journal of Scheduling, Springer, vol. 23(5), pages 619-628, October.
    14. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    15. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    16. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    17. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    18. Chen, Chuen-Lung & Vempati, Venkateswara S. & Aljaber, Nasser, 1995. "An application of genetic algorithms for flow shop problems," European Journal of Operational Research, Elsevier, vol. 80(2), pages 389-396, January.
    19. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
    20. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4745-:d:1286488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.