IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v203y2013i1p141-16610.1007-s10479-011-0855-x.html
   My bibliography  Save this article

Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution

Author

Listed:
  • Bora Tarhan
  • Ignacio Grossmann
  • Vikas Goel

Abstract

In many planning problems under uncertainty the uncertainties are decision-dependent and resolve gradually depending on the decisions made. In this paper, we address a generic non-convex MINLP model for such planning problems where the uncertain parameters are assumed to follow discrete distributions and the decisions are made on a discrete time horizon. In order to account for the decision-dependent uncertainties and gradual uncertainty resolution, we propose a multistage stochastic programming model in which the non-anticipativity constraints in the model are not prespecified but change as a function of the decisions made. Furthermore, planning problems consist of several scenario subproblems where each subproblem is modeled as a nonconvex mixed-integer nonlinear program. We propose a solution strategy that combines global optimization and outer-approximation in order to optimize the planning decisions. We apply this generic problem structure and the proposed solution algorithm to several planning problems to illustrate the efficiency of the proposed method with respect to the method that uses only global optimization. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Bora Tarhan & Ignacio Grossmann & Vikas Goel, 2013. "Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution," Annals of Operations Research, Springer, vol. 203(1), pages 141-166, March.
  • Handle: RePEc:spr:annopr:v:203:y:2013:i:1:p:141-166:10.1007/s10479-011-0855-x
    DOI: 10.1007/s10479-011-0855-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0855-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0855-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George B. Dantzig, 1955. "Linear Programming under Uncertainty," Management Science, INFORMS, vol. 1(3-4), pages 197-206, 04-07.
    2. Tore Jonsbråten & Roger Wets & David Woodruff, 1998. "A class of stochastic programs withdecision dependent random elements," Annals of Operations Research, Springer, vol. 82(0), pages 83-106, August.
    3. Viswanath, Kannan & Peeta, Srinivas & Salman, Sibel F., 2004. "Investing in the Links of a Stochastic Network to Minimize Expected Shortest Path. Length," Purdue University Economics Working Papers 1167, Purdue University, Department of Economics.
    4. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    5. Marshall L. Fisher, 1985. "An Applications Oriented Guide to Lagrangian Relaxation," Interfaces, INFORMS, vol. 15(2), pages 10-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    2. Maier, Sebastian & Pflug, Georg C. & Polak, John W., 2020. "Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 285(1), pages 133-147.
    3. F. Hooshmand & S. A. MirHassani, 2018. "Reduction of nonanticipativity constraints in multistage stochastic programming problems with endogenous and exogenous uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 1-18, February.
    4. Sha, Yue & Zhang, Junlong & Cao, Hui, 2021. "Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 290(3), pages 886-900.
    5. Giovanni Pantuso, 2021. "A node formulation for multistage stochastic programs with endogenous uncertainty," Computational Management Science, Springer, vol. 18(3), pages 325-354, July.
    6. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    7. Majid Taghavi & Kai Huang, 2020. "A Lagrangian relaxation approach for stochastic network capacity expansion with budget constraints," Annals of Operations Research, Springer, vol. 284(2), pages 605-621, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Hellemo & Paul I. Barton & Asgeir Tomasgard, 2018. "Decision-dependent probabilities in stochastic programs with recourse," Computational Management Science, Springer, vol. 15(3), pages 369-395, October.
    2. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    3. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    4. Tahir Ekin & Nicholas G. Polson & Refik Soyer, 2017. "Augmented nested sampling for stochastic programs with recourse and endogenous uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 613-627, December.
    5. Kopa, Miloš & Rusý, Tomáš, 2023. "Robustness of stochastic programs with endogenous randomness via contamination," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1259-1272.
    6. Miloš Kopa & Tomáš Rusý, 2021. "A decision-dependent randomness stochastic program for asset–liability management model with a pricing decision," Annals of Operations Research, Springer, vol. 299(1), pages 241-271, April.
    7. Tahir Ekin & Nicholas G. Polson & Refik Soyer, 2014. "Augmented Markov Chain Monte Carlo Simulation for Two-Stage Stochastic Programs with Recourse," Decision Analysis, INFORMS, vol. 11(4), pages 250-264, December.
    8. Solak, Senay & Clarke, John-Paul B. & Johnson, Ellis L. & Barnes, Earl R., 2010. "Optimization of R&D project portfolios under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 207(1), pages 420-433, November.
    9. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    10. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    11. Hang Li & Zhe Zhang & Xianggen Yin & Buhan Zhang, 2020. "Preventive Security-Constrained Optimal Power Flow with Probabilistic Guarantees," Energies, MDPI, vol. 13(9), pages 1-13, May.
    12. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    13. Arie M. C. A. Koster & Michael Poss, 2018. "Special issue on: robust combinatorial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 207-209, September.
    14. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    15. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    16. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    17. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    18. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    19. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    20. Mazzola, Joseph B. & Neebe, Alan W., 1999. "Lagrangian-relaxation-based solution procedures for a multiproduct capacitated facility location problem with choice of facility type," European Journal of Operational Research, Elsevier, vol. 115(2), pages 285-299, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:203:y:2013:i:1:p:141-166:10.1007/s10479-011-0855-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.