IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v290y2020i1d10.1007_s10479-018-2930-z.html
   My bibliography  Save this article

Dismantlers’ dilemma in end-of-life vehicle recycling markets: a system dynamics model

Author

Listed:
  • T. V. Krishna Mohan

    (Indian Institute of Technology Madras)

  • R. K. Amit

    (Indian Institute of Technology Madras)

Abstract

Stringent environmental regulations, improving technology, and growing incomes have shortened vehicle life-cycles that leads to increasing number of end-of life vehicles (ELVs). ELVs form a valuable source of materials when they are recycled in an efficient manner. Regulated ELV recycling markets for ELV recycling ensure an efficient material recovery, unlike unregulated markets which are present predominantly in emerging economies. We analyze ELV recycling in an unregulated market through a system dynamics model. These markets are close to perfectly competitive markets with low enter and exit barriers for dismantlers, and the scrap from dismantled vehicles is traded as a commodity. Dismantlers entry and exit decisions—dismantlers’ dilemma—are based on profitability. We conjecture that the dismantlers’ dilemma constrains the dismantling capacity and fluctuates the scrap supply in unregulated recycling markets. Using the Indian data, the simulation results show that the unregulated market will lead to lower dismantling capacity, which may further worsen by increase in dismantling costs. From our analysis, we suggest that lowering dismantling costs through coordination among the dismantlers and providing support for scrap prices through regulation can improve the dismantling situation in these markets.

Suggested Citation

  • T. V. Krishna Mohan & R. K. Amit, 2020. "Dismantlers’ dilemma in end-of-life vehicle recycling markets: a system dynamics model," Annals of Operations Research, Springer, vol. 290(1), pages 591-619, July.
  • Handle: RePEc:spr:annopr:v:290:y:2020:i:1:d:10.1007_s10479-018-2930-z
    DOI: 10.1007/s10479-018-2930-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2930-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2930-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inghels, Dirk & Dullaert, Wout & Raa, Birger & Walther, Grit, 2016. "Influence of composition, amount and life span of passenger cars on end-of-life vehicles waste in Belgium: A system dynamics approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 80-104.
    2. Qu, Xiuli & Williams, Julie Ann Stuart, 2008. "An analytical model for reverse automotive production planning and pricing," European Journal of Operational Research, Elsevier, vol. 190(3), pages 756-767, November.
    3. Gang Wang & Angappa Gunasekaran, 2017. "Modeling and analysis of sustainable supply chain dynamics," Annals of Operations Research, Springer, vol. 250(2), pages 521-536, March.
    4. Cruz-Rivera, Reynaldo & Ertel, Jürgen, 2009. "Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico," European Journal of Operational Research, Elsevier, vol. 196(3), pages 930-939, August.
    5. Albertson, Kevin & Aylen, Jonathan, 1996. "Modelling the Great Lakes freeze: forecasting and seasonality in the market for ferrous scrap," International Journal of Forecasting, Elsevier, vol. 12(3), pages 345-359, September.
    6. Muhammad Azmi & Akihiro Tokai, 2017. "Electric vehicle and end-of-life vehicle estimation in Malaysia 2040," Environment Systems and Decisions, Springer, vol. 37(4), pages 451-464, December.
    7. Paulo Ferrão & Pedro Nazareth & José Amaral, 2006. "Strategies for Meeting EU End‐of‐Life Vehicle Reuse/Recovery Targets," Journal of Industrial Ecology, Yale University, vol. 10(4), pages 77-93, October.
    8. Luyi Gui & Atalay Atasu & Özlem Ergun & L. Beril Toktay, 2016. "Efficient Implementation of Collective Extended Producer Responsibility Legislation," Management Science, INFORMS, vol. 62(4), pages 1098-1123, April.
    9. Marcus Brandenburg & Tobias Rebs, 2015. "Sustainable supply chain management: a modeling perspective," Annals of Operations Research, Springer, vol. 229(1), pages 213-252, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang Yu & Syed Abdul Rehman Khan & Hafiz Muhammad Zia-ul-haq & Muhammad Tanveer & Muhammad Jawad Sajid & Shehzad Ahmed, 2022. "A Bibliometric Analysis of End-of-Life Vehicles Related Research: Exploring a Path to Environmental Sustainability," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    2. Vuk Petronijević & Aleksandar Đorđević & Miladin Stefanović & Slavko Arsovski & Zdravko Krivokapić & Milan Mišić, 2020. "Energy Recovery through End-of-Life Vehicles Recycling in Developing Countries," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    3. Fatin Amrina A. Rashid & Hawa Hishamuddin & Nizaroyani Saibani & Mohd Radzi Abu Mansor & Zambri Harun, 2022. "A Review of Supply Chain Uncertainty Management in the End-of-Life Vehicle Industry," Sustainability, MDPI, vol. 14(19), pages 1-28, October.
    4. Tsan-Ming Choi & Tana Siqin, 2024. "Can government policies help to achieve the pollutant emissions information disclosure target in the Industry 4.0 era?," Annals of Operations Research, Springer, vol. 342(2), pages 1129-1147, November.
    5. Geoffrey Barongo Omosa & Solange Ayuni Numfor & Monika Kosacka-Olejnik, 2023. "Modeling a Reverse Logistics Supply Chain for End-of-Life Vehicle Recycling Risk Management: A Fuzzy Risk Analysis Approach," Sustainability, MDPI, vol. 15(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuk Petronijević & Aleksandar Đorđević & Miladin Stefanović & Slavko Arsovski & Zdravko Krivokapić & Milan Mišić, 2020. "Energy Recovery through End-of-Life Vehicles Recycling in Developing Countries," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    2. Taghikhah, Firouzeh & Voinov, Alexey & Shukla, Nagesh & Filatova, Tatiana & Anufriev, Mikhail, 2021. "Integrated modeling of extended agro-food supply chains: A systems approach," European Journal of Operational Research, Elsevier, vol. 288(3), pages 852-868.
    3. K. T. Shibin & Rameshwar Dubey & Angappa Gunasekaran & Benjamin Hazen & David Roubaud & Shivam Gupta & Cyril Foropon, 2020. "Examining sustainable supply chain management of SMEs using resource based view and institutional theory," Annals of Operations Research, Springer, vol. 290(1), pages 301-326, July.
    4. Simic, Vladimir, 2015. "A two-stage interval-stochastic programming model for planning end-of-life vehicles allocation under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 19-29.
    5. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    6. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    7. Jonathan Aylen & Kevin Albertson & Gina Cavan, 2014. "The impact of weather and climate on tourist demand: the case of Chester Zoo," Climatic Change, Springer, vol. 127(2), pages 183-197, November.
    8. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    9. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    10. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    11. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    12. Qi Feng & Chengzhang Li & Mengshi Lu & J. George Shanthikumar, 2022. "Implementing Environmental and Social Responsibility Programs in Supply Networks Through Multiunit Bilateral Negotiation," Management Science, INFORMS, vol. 68(4), pages 2579-2599, April.
    13. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    14. Raut, Rakesh D. & Gardas, Bhaskar B. & Narwane, Vaibhav S. & Narkhede, Balkrishna E., 2019. "Improvement in the food losses in fruits and vegetable supply chain - a perspective of cold third-party logistics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    15. Gorji, Mohammad-Ali & Shetab-Boushehri, Seyyed-Nader & Akbarzadeh, Meisam, 2023. "Evaluation and improvement of the resilience of a transportation system against epidemic diseases: A system dynamics approach," Transport Policy, Elsevier, vol. 133(C), pages 27-44.
    16. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    17. Hamed Soleimani & Prem Chhetri & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-Hashem & Shahrooz Shahparvari, 2022. "Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics," Annals of Operations Research, Springer, vol. 318(1), pages 531-556, November.
    18. Dominik Zimon & Jonah Tyan & Robert Sroufe, 2019. "Implementing Sustainable Supply Chain Management: Reactive, Cooperative, and Dynamic Models," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    19. Qin, Zhongfeng & Ji, Xiaoyu, 2010. "Logistics network design for product recovery in fuzzy environment," European Journal of Operational Research, Elsevier, vol. 202(2), pages 479-490, April.
    20. Tsan-Ming Choi & Mingzheng Wang & Xiaohang Yue, 2016. "Emerging production optimization issues in supply chain systems," Annals of Operations Research, Springer, vol. 240(2), pages 381-393, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:290:y:2020:i:1:d:10.1007_s10479-018-2930-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.