IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v82y2022ipbs0038012122000854.html
   My bibliography  Save this article

A mat-heuristic based solution approach for an extended nurse rostering problem with skills and units

Author

Listed:
  • Turhan, Aykut Melih
  • Bilgen, Bilge

Abstract

The Nurse Rostering Problem (NRP) is a combinatorial optimization problem that deals with assignment of nurses to shifts based on a set of constraints. The real-life NRP applications are difficult to solve because of the fact that the problem is NP-hard. In this paper, we focus on two main aspects of the problem, model and solution methodology. Firstly, we propose a novel model that also considers unit assignments. Majority of the studies in the literature accounts for nurse, day, and shift assignments. Due to skill and experience levels, not every nurse can be assigned to every unit. Therefore, accounting for unit assignments helps the model to be more accurate in terms of real-life scenarios. Lastly, we propose a new mathematical based heuristic that combines Integer Programming (IP) and Discrete Particle Swarm Optimization (PSO). IP is used to generate initial schedules and PSO further improves the schedule. Any infeasibility is corrected by IP along the process. IP and PSO coordinate until final stopping criterion. Computational experiments on test data show that the proposed algorithm generates near optimal solutions.

Suggested Citation

  • Turhan, Aykut Melih & Bilgen, Bilge, 2022. "A mat-heuristic based solution approach for an extended nurse rostering problem with skills and units," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
  • Handle: RePEc:eee:soceps:v:82:y:2022:i:pb:s0038012122000854
    DOI: 10.1016/j.seps.2022.101300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122000854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.
    2. Maenhout, Broos & Vanhoucke, Mario, 2013. "An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems," Omega, Elsevier, vol. 41(2), pages 485-499.
    3. Cheang, B. & Li, H. & Lim, A. & Rodrigues, B., 2003. "Nurse rostering problems--a bibliographic survey," European Journal of Operational Research, Elsevier, vol. 151(3), pages 447-460, December.
    4. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    5. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.
    6. Federico Della Croce & Fabio Salassa, 2014. "A variable neighborhood search based matheuristic for nurse rostering problems," Annals of Operations Research, Springer, vol. 218(1), pages 185-199, July.
    7. E K Burke & T Curtois & R Qu & G Vanden Berghe, 2010. "A scatter search methodology for the nurse rostering problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1667-1679, November.
    8. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    9. Farasat, Alireza & Nikolaev, Alexander G., 2016. "Signed social structure optimization for shift assignment in the nurse scheduling problem," Socio-Economic Planning Sciences, Elsevier, vol. 56(C), pages 3-13.
    10. Pieter Smet & Burak Bilgin & Patrick De Causmaecker & Greet Vanden Berghe, 2014. "Modelling and evaluation issues in nurse rostering," Annals of Operations Research, Springer, vol. 218(1), pages 303-326, July.
    11. Wright, P. Daniel & Mahar, Stephen, 2013. "Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction," Omega, Elsevier, vol. 41(6), pages 1042-1052.
    12. Uwe Aickelin & Paul White, 2004. "Building Better Nurse Scheduling Algorithms," Annals of Operations Research, Springer, vol. 128(1), pages 159-177, April.
    13. Sara Ceschia & Rosita Guido & Andrea Schaerf, 2020. "Solving the static INRC-II nurse rostering problem by simulated annealing based on large neighborhoods," Annals of Operations Research, Springer, vol. 288(1), pages 95-113, May.
    14. Rahimian, Erfan & Akartunalı, Kerem & Levine, John, 2017. "A hybrid Integer Programming and Variable Neighbourhood Search algorithm to solve Nurse Rostering Problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 411-423.
    15. Bard, Jonathan F. & Purnomo, Hadi W., 2005. "Preference scheduling for nurses using column generation," European Journal of Operational Research, Elsevier, vol. 164(2), pages 510-534, July.
    16. Burak Bilgin & Patrick Causmaecker & Benoît Rossie & Greet Vanden Berghe, 2012. "Local search neighbourhoods for dealing with a novel nurse rostering model," Annals of Operations Research, Springer, vol. 194(1), pages 33-57, April.
    17. Bard, Jonathan F. & Purnomo, Hadi W., 2005. "A column generation-based approach to solve the preference scheduling problem for nurses with downgrading," Socio-Economic Planning Sciences, Elsevier, vol. 39(3), pages 193-213, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    2. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    3. De Bruecker, Philippe & Beliën, Jeroen & Van den Bergh, Jorne & Demeulemeester, Erik, 2018. "A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 439-452.
    4. Hadi W. Purnomo & Jonathan F. Bard, 2007. "Cyclic preference scheduling for nurses using branch and price," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 200-220, March.
    5. Lai, David S.W. & Leung, Janny M.Y. & Dullaert, Wout & Marques, Inês, 2020. "A graph-based formulation for the shift rostering problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 285-300.
    6. Ağralı, Semra & Taşkın, Z. Caner & Ünal, A. Tamer, 2017. "Employee scheduling in service industries with flexible employee availability and demand," Omega, Elsevier, vol. 66(PA), pages 159-169.
    7. Elín Björk Böðvarsdóttir & Niels-Christian Fink Bagger & Laura Elise Høffner & Thomas J. R. Stidsen, 2022. "A flexible mixed integer programming-based system for real-world nurse rostering," Journal of Scheduling, Springer, vol. 25(1), pages 59-88, February.
    8. Sara Ceschia & Rosita Guido & Andrea Schaerf, 2020. "Solving the static INRC-II nurse rostering problem by simulated annealing based on large neighborhoods," Annals of Operations Research, Springer, vol. 288(1), pages 95-113, May.
    9. Damcı-Kurt, Pelin & Zhang, Minjiao & Marentay, Brian & Govind, Nirmal, 2019. "Improving physician schedules by leveraging equalization: Cases from hospitals in U.S," Omega, Elsevier, vol. 85(C), pages 182-193.
    10. Belií«n, Jeroen & Demeulemeester, Erik, 2008. "A branch-and-price approach for integrating nurse and surgery scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 652-668, September.
    11. Suk Ho Jin & Ho Yeong Yun & Suk Jae Jeong & Kyung Sup Kim, 2017. "Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems for Solving the Nurse Rostering Problem," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    12. Deborah L. Kellogg & Steven Walczak, 2007. "Nurse Scheduling: From Academia to Implementation or Not?," Interfaces, INFORMS, vol. 37(4), pages 355-369, August.
    13. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    14. Dohn, Anders & Mason, Andrew, 2013. "Branch-and-price for staff rostering: An efficient implementation using generic programming and nested column generation," European Journal of Operational Research, Elsevier, vol. 230(1), pages 157-169.
    15. Tom Rihm & Philipp Baumann, 2018. "Staff assignment with lexicographically ordered acceptance levels," Journal of Scheduling, Springer, vol. 21(2), pages 167-189, April.
    16. Frederik Knust & Lin Xie, 2019. "Simulated annealing approach to nurse rostering benchmark and real-world instances," Annals of Operations Research, Springer, vol. 272(1), pages 187-216, January.
    17. Sara Ceschia & Nguyen Dang & Patrick Causmaecker & Stefaan Haspeslagh & Andrea Schaerf, 2019. "The Second International Nurse Rostering Competition," Annals of Operations Research, Springer, vol. 274(1), pages 171-186, March.
    18. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    19. Chern, Ching-Chin & Chien, Pei-Szu & Chen, Shu-Yi, 2008. "A heuristic algorithm for the hospital health examination scheduling problem," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1137-1157, May.
    20. Örmeci, E. Lerzan & Salman, F. Sibel & Yücel, Eda, 2014. "Staff rostering in call centers providing employee transportation," Omega, Elsevier, vol. 43(C), pages 41-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:82:y:2022:i:pb:s0038012122000854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.