IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v33y2003i1p67-79.html
   My bibliography  Save this article

Optimizing Periodic Maintenance Operations for Schindler Elevator Corporation

Author

Listed:
  • Fred Blakeley

    (Schindler Elevator Corporation, Inc., 20 Whippany Road, P.O. Box 1935, Morristown, New Jersey 07962-1935)

  • Burçin Argüello

    (Transportation/Logistics Services, ESRI, 380 New York Street, Redlands, California 92373)

  • Buyang Cao

    (Transportation/Logistics Services, ESRI, 380 New York Street, Redlands, California 92373)

  • Wolfgang Hall

    (Transportation/Logistics Services, ESRI, 380 New York Street, Redlands, California 92373)

  • Joseph Knolmajer

    (Schindler Elevator Corporation, Inc., 20 Whippany Road, P.O. Box 1935, Morristown, New Jersey 07962-1935)

Abstract

Schindler, the world's largest escalator company and second-largest elevator company, maintains tens of thousands of elevators and escalators throughout North America. Thousands of technicians are on the road each day to maintain, repair, and help in emergencies. Each technician's route requires precise and optimized planning. Schindler Elevator Corporation turned to Environmental Systems Research Institute (ESRI) to develop an automated route-scheduling and planning system. ESRI provided a geographic-information-system-integrated application that employs operations research techniques to optimize preventive maintenance operations. It relies on a series of algorithms to assign maintenance work to technicians and to create efficient day-routes by solving the periodic-vehicle-routing problem. These automated tools allow Schindler to restructure and streamline service areas. The optimization system saves over $1 million annually and increases Schindler's managers' awareness of operating revenue.

Suggested Citation

  • Fred Blakeley & Burçin Argüello & Buyang Cao & Wolfgang Hall & Joseph Knolmajer, 2003. "Optimizing Periodic Maintenance Operations for Schindler Elevator Corporation," Interfaces, INFORMS, vol. 33(1), pages 67-79, February.
  • Handle: RePEc:inm:orinte:v:33:y:2003:i:1:p:67-79
    DOI: 10.1287/inte.33.1.67.12722
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.33.1.67.12722
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.33.1.67.12722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Gaudioso & G. Paletta, 1992. "A Heuristic for the Periodic Vehicle Routing Problem," Transportation Science, INFORMS, vol. 26(2), pages 86-92, May.
    2. Tan, C.C.R. & Beasley, J.E., 1984. "A heuristic algorithm for the period vehicle routing problem," Omega, Elsevier, vol. 12(5), pages 497-504.
    3. Bruce L. Golden & Edward A. Wasil, 1987. "OR Practice—Computerized Vehicle Routing in the Soft Drink Industry," Operations Research, INFORMS, vol. 35(1), pages 6-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    2. Alegre, Jesus & Laguna, Manuel & Pacheco, Joaquin, 2007. "Optimizing the periodic pick-up of raw materials for a manufacturer of auto parts," European Journal of Operational Research, Elsevier, vol. 179(3), pages 736-746, June.
    3. Hemmelmayr, Vera C. & Doerner, Karl F. & Hartl, Richard F., 2009. "A variable neighborhood search heuristic for periodic routing problems," European Journal of Operational Research, Elsevier, vol. 195(3), pages 791-802, June.
    4. Syan, Chanan S. & Ramsoobag, Geeta, 2019. "Maintenance applications of multi-criteria optimization: A review," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    5. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    6. Rodríguez-Martín, Inmaculada & Salazar-González, Juan-José & Yaman, Hande, 2019. "The periodic vehicle routing problem with driver consistency," European Journal of Operational Research, Elsevier, vol. 273(2), pages 575-584.
    7. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    8. Francis, Peter & Smilowitz, Karen, 2006. "Modeling techniques for periodic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 872-884, December.
    9. Cavada, Juan P. & Cortés, Cristián E. & Goic, Marcel & Weintraub, Andrés & Zambrano, Juan I., 2020. "Accounting for cost heterogeneity on the demand in the context of a technician dispatching problem," European Journal of Operational Research, Elsevier, vol. 287(3), pages 820-831.
    10. Ehsan Pourjavad & Eman Almehdawe, 2022. "Optimization of the technician routing and scheduling problem for a telecommunication industry," Annals of Operations Research, Springer, vol. 315(1), pages 371-395, August.
    11. Voravee Punyakum & Kanchana Sethanan & Krisanarach Nitisiri & Rapeepan Pitakaso, 2022. "Hybrid Particle Swarm and Whale Optimization Algorithm for Multi-Visit and Multi-Period Dynamic Workforce Scheduling and Routing Problems," Mathematics, MDPI, vol. 10(19), pages 1-20, October.
    12. Wooseung Jang & Huay H. Lim & Thomas J. Crowe & Gail Raskin & Thomas E. Perkins, 2006. "The Missouri Lottery Optimizes Its Scheduling and Routing to Improve Efficiency and Balance," Interfaces, INFORMS, vol. 36(4), pages 302-313, August.
    13. Chen, Yujie & Cowling, Peter & Polack, Fiona & Remde, Stephen & Mourdjis, Philip, 2017. "Dynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage system," European Journal of Operational Research, Elsevier, vol. 257(2), pages 494-510.
    14. S Coene & A Arnout & F C R Spieksma, 2010. "On a periodic vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(12), pages 1719-1728, December.
    15. Ines Mathlouthi & Michel Gendreau & Jean-Yves Potvin, 2021. "Branch-and-Price for a Multi-attribute Technician Routing and Scheduling Problem," SN Operations Research Forum, Springer, vol. 2(1), pages 1-35, March.
    16. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi & Andrea Valletta, 2011. "An Exact Algorithm for the Period Routing Problem," Operations Research, INFORMS, vol. 59(1), pages 228-241, February.
    17. John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
    18. Peter Francis & Karen Smilowitz & Michal Tzur, 2007. "Flexibility and complexity in periodic distribution problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 136-150, March.
    19. Cortés, Cristián E. & Gendreau, Michel & Rousseau, Louis Martin & Souyris, Sebastián & Weintraub, Andrés, 2014. "Branch-and-price and constraint programming for solving a real-life technician dispatching problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 300-312.
    20. López-Santana, Eduyn & Akhavan-Tabatabaei, Raha & Dieulle, Laurence & Labadie, Nacima & Medaglia, Andrés L., 2016. "On the combined maintenance and routing optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 199-214.
    21. Rodríguez-Martín, Inmaculada & Yaman, Hande, 2022. "Periodic Vehicle Routing Problem with Driver Consistency and service time optimization," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 468-484.
    22. P. Matl & R. F. Hartl & T. Vidal, 2018. "Workload Equity in Vehicle Routing Problems: A Survey and Analysis," Transportation Science, INFORMS, vol. 52(2), pages 239-260, March.
    23. Lei, Chao & Zhang, Qian & Ouyang, Yanfeng, 2017. "Planning of parking enforcement patrol considering drivers’ parking payment behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 375-392.
    24. Zamorano, Emilio & Stolletz, Raik, 2017. "Branch-and-price approaches for the Multiperiod Technician Routing and Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 55-68.
    25. Bender, Matthias & Meyer, Anne & Kalcsics, Jörg & Nickel, Stefan, 2016. "The multi-period service territory design problem – An introduction, a model and a heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 135-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Baldacci & Enrico Bartolini & Aristide Mingozzi & Andrea Valletta, 2011. "An Exact Algorithm for the Period Routing Problem," Operations Research, INFORMS, vol. 59(1), pages 228-241, February.
    2. D Ronen & C A Goodhart, 2008. "Tactical store delivery planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1047-1054, August.
    3. Rodríguez-Martín, Inmaculada & Salazar-González, Juan-José & Yaman, Hande, 2019. "The periodic vehicle routing problem with driver consistency," European Journal of Operational Research, Elsevier, vol. 273(2), pages 575-584.
    4. Rodríguez-Martín, Inmaculada & Yaman, Hande, 2022. "Periodic Vehicle Routing Problem with Driver Consistency and service time optimization," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 468-484.
    5. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    6. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Assessing and improving management practices when planning packaging waste collection systems," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 116-129.
    7. Angelelli, Enrico & Grazia Speranza, Maria, 2002. "The periodic vehicle routing problem with intermediate facilities," European Journal of Operational Research, Elsevier, vol. 137(2), pages 233-247, March.
    8. le Blanc, H.M. & Cruijssen, F. & Fleuren, H.A. & de Koster, M.B.M., 2006. "Factory gate pricing: An analysis of the Dutch retail distribution," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1950-1967, November.
    9. Cruijssen, F., 2006. "Horizontal cooperation in transport and logistics," Other publications TiSEM ab6dbe68-aebc-4b03-8eea-d, Tilburg University, School of Economics and Management.
    10. Ann-Kathrin Rothenbächer, 2019. "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures," Transportation Science, INFORMS, vol. 53(3), pages 850-866, May.
    11. Chefi Triki, 2017. "Solving the Periodic Edge Routing Problem in the Municipal Waste Collection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(03), pages 1-13, June.
    12. Zhou, Lin & Zhen, Lu & Baldacci, Roberto & Boschetti, Marco & Dai, Ying & Lim, Andrew, 2021. "A Heuristic Algorithm for solving a large-scale real-world territory design problem," Omega, Elsevier, vol. 103(C).
    13. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.
    14. Claassen, G.D.H. & Hendriks, Th.H.B., 2007. "An application of Special Ordered Sets to a periodic milk collection problem," European Journal of Operational Research, Elsevier, vol. 180(2), pages 754-769, July.
    15. Ann-Kathrin Rothenbächer, 2017. "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures," Working Papers 1714, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Mourgaya, M. & Vanderbeck, F., 2007. "Column generation based heuristic for tactical planning in multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1028-1041, December.
    17. Webb, Ian R. & Larson, Richard C., 1995. "Period and phase of customer replenishment: A new approach to the Strategic Inventory/Routing problem," European Journal of Operational Research, Elsevier, vol. 85(1), pages 132-148, August.
    18. Campbell, Ann Melissa & Hardin, Jill R., 2005. "Vehicle minimization for periodic deliveries," European Journal of Operational Research, Elsevier, vol. 165(3), pages 668-684, September.
    19. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    20. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:33:y:2003:i:1:p:67-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.