IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v283y2019i1d10.1007_s10479-017-2729-3.html
   My bibliography  Save this article

Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design

Author

Listed:
  • Mohamadreza Fazli-Khalaf

    (Kharazmi University)

  • Soheyl Khalilpourazari

    (Kharazmi University)

  • Mohammad Mohammadi

    (Kharazmi University)

Abstract

This research proposes a new tri-objective mathematical model for designing blood supply chain network in emergency situations. The mathematical model aims to minimize total supply chain costs and transportation time between facilities while maximizing total testing reliability of the donated blood in the laboratories. The model considers five echelons including blood donor groups, blood collection facilities, laboratories, blood centers and hospitals. Different transportation means with variant speed and capacity are considered in the model to carry the blood between facilities. Since, most of the main parameters of the mathematical model are tainted with uncertainty in real-world applications, two robust possibilistic flexible chance constraint programming (RPFCCP) and possibilistic flexible chance constraint programming models are developed to provide risk-averse and robust solutions to the decision makers. In addition, the application of the proposed multi-objective mathematical model is investigated in a real-world case study using real data on Iran’s capital, Tehran, which is considered to be a potential place for a destructive earthquake. Using different realizations, the applicability and efficiency of the models are investigated in the case study. The results indicated that the RPFCCP model is able to handle uncertainty in the parameters of the objective function and constraints more efficiently and is able to provide robust and risk-averse solutions for the problem which are resistant to different scenarios.

Suggested Citation

  • Mohamadreza Fazli-Khalaf & Soheyl Khalilpourazari & Mohammad Mohammadi, 2019. "Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design," Annals of Operations Research, Springer, vol. 283(1), pages 1079-1109, December.
  • Handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-017-2729-3
    DOI: 10.1007/s10479-017-2729-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2729-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2729-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    2. Fahimnia, Behnam & Jabbarzadeh, Armin & Ghavamifar, Ali & Bell, Michael, 2017. "Supply chain design for efficient and effective blood supply in disasters," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 700-709.
    3. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    4. Anna Nagurney & Amir Masoumi & Min Yu, 2012. "Supply chain network operations management of a blood banking system with cost and risk minimization," Computational Management Science, Springer, vol. 9(2), pages 205-231, May.
    5. Mole, RH, 1975. "Inventory control in hospital blood banks," Omega, Elsevier, vol. 3(4), pages 461-473, August.
    6. Leo, Gianmaria & Lodi, Andrea & Tubertini, Paolo & Di Martino, Mirko, 2016. "Emergency Department Management in Lazio, Italy," Omega, Elsevier, vol. 58(C), pages 128-138.
    7. Şahinyazan, Feyza Güliz & Kara, Bahar Y. & Taner, Mehmet Rüştü, 2015. "Selective vehicle routing for a mobile blood donation system," European Journal of Operational Research, Elsevier, vol. 245(1), pages 22-34.
    8. Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
    9. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    10. Sukho Jin & Sukjae Jeong & Jangyeop Kim & Kyungsup Kim, 2015. "A logistics model for the transport of disaster victims with various injuries and survival probabilities," Annals of Operations Research, Springer, vol. 230(1), pages 17-33, July.
    11. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soheyl Khalilpourazari & Hossein Hashemi Doulabi, 2023. "A flexible robust model for blood supply chain network design problem," Annals of Operations Research, Springer, vol. 328(1), pages 701-726, September.
    2. Asrat Mekonnen Gobachew & Hans-Dietrich Haasis, 2023. "Scenario-Based Optimization of Supply Chain Performance under Demand Uncertainty," Sustainability, MDPI, vol. 15(13), pages 1-32, July.
    3. Noor Yusuf & Tareq Al-Ansari, 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models," Energies, MDPI, vol. 16(22), pages 1-33, November.
    4. Anna Nagurney & Pritha Dutta, 2021. "A Multiclass, Multiproduct Covid-19 Convalescent Plasma Donor Equilibrium Model," SN Operations Research Forum, Springer, vol. 2(3), pages 1-30, September.
    5. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Elmira Farrokhizadeh & Seyed Amin Seyfi-Shishavan & Sule Itir Satoglu, 2022. "Blood supply planning during natural disasters under uncertainty: a novel bi-objective model and an application for red crescent," Annals of Operations Research, Springer, vol. 319(1), pages 73-113, December.
    7. Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    8. Patra, T. Devi Prasad & Jha, J.K., 2021. "A two-period newsvendor model for prepositioning with a post-disaster replenishment using Bayesian demand update," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    9. Sheikholeslami, Mahnaz & Zarrinpoor, Naeme, 2023. "Designing an integrated humanitarian logistics network for the preparedness and response phases under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    10. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.
    11. Khouloud Dorgham & Issam Nouaouri & Jean-Christophe Nicolas & Gilles Goncalves, 2022. "Collaborative hospital supply chain network design problem under uncertainty," Operational Research, Springer, vol. 22(5), pages 4607-4640, November.
    12. Lin Chen & Ting Dong & Jin Peng & Dan Ralescu, 2023. "Uncertainty Analysis and Optimization Modeling with Application to Supply Chain Management: A Systematic Review," Mathematics, MDPI, vol. 11(11), pages 1-45, May.
    13. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Sohrabi, Mahnaz & Zandieh, Mostafa & Shokouhifar, Mohammad, 2023. "Sustainable inventory management in blood banks considering health equity using a combined metaheuristic-based robust fuzzy stochastic programming," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    15. Abdorrrahman Haeri & Seyyed-Mahdi Hosseini-Motlagh & Mohammad Reza Ghatreh Samani & Marziehsadat Rezaei, 2022. "An integrated socially responsible-efficient approach toward health service network design," Annals of Operations Research, Springer, vol. 319(1), pages 463-516, December.
    16. Raza, Nazia & Moazeni, Faegheh, 2024. "Chance-constrained vulnerability assessment of smart water distribution systems against stealthy false data injection attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    17. Esmaeili, Somayeh & Bashiri, Mahdi & Amiri, Amirhossein, 2023. "An exact criterion space search algorithm for a bi-objective blood collection problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 210-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soheyl Khalilpourazari & Alireza Arshadi Khamseh, 2019. "Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application," Annals of Operations Research, Springer, vol. 283(1), pages 355-393, December.
    2. Soheyl Khalilpourazari & Shima Soltanzadeh & Gerhard-Wilhelm Weber & Sankar Kumar Roy, 2020. "Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study," Annals of Operations Research, Springer, vol. 289(1), pages 123-152, June.
    3. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    4. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
    6. M. Rezaei Kallaj & M. Hasannia Kolaee & S. M. J. Mirzapour Al-e-hashem, 2023. "Integrating bloodmobiles and drones in a post-disaster blood collection problem considering blood groups," Annals of Operations Research, Springer, vol. 321(1), pages 783-811, February.
    7. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    8. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    9. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    10. Javid Ghahremani-Nahr & Ramez Kian & Ehsan Sabet & Vahid Akbari, 2022. "A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach," Operational Research, Springer, vol. 22(5), pages 4685-4723, November.
    11. Elmira Farrokhizadeh & Seyed Amin Seyfi-Shishavan & Sule Itir Satoglu, 2022. "Blood supply planning during natural disasters under uncertainty: a novel bi-objective model and an application for red crescent," Annals of Operations Research, Springer, vol. 319(1), pages 73-113, December.
    12. Ramezanian, Reza & Behboodi, Zahra, 2017. "Blood supply chain network design under uncertainties in supply and demand considering social aspects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 69-82.
    13. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    14. Seyyed-Mahdi Hosseini-Motlagh & Niloofar Gilani Larimi & Maryam Oveysi Nejad, 2022. "A qualitative, patient-centered perspective toward plasma products supply chain network design with risk controlling," Operational Research, Springer, vol. 22(1), pages 779-824, March.
    15. Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    16. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    17. Mahsa Pouraliakbari-Mamaghani & Ali Ghodratnama & Seyed Hamid Reza Pasandideh & Ahmed Saif, 2022. "A robust possibilistic programming approach for blood supply chain network design in disaster relief considering congestion," Operational Research, Springer, vol. 22(3), pages 1987-2032, July.
    18. Sara Cheraghi & Seyyed-Mahdi Hosseini-Motlagh, 2020. "Responsive and reliable injured-oriented blood supply chain for disaster relief: a real case study," Annals of Operations Research, Springer, vol. 291(1), pages 129-167, August.
    19. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    20. Bruno, Giuseppe & Diglio, Antonio & Piccolo, Carmela & Cannavacciuolo, Lorella, 2019. "Territorial reorganization of regional blood management systems: Evidences from an Italian case study," Omega, Elsevier, vol. 89(C), pages 54-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-017-2729-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.