Integrating bloodmobiles and drones in a post-disaster blood collection problem considering blood groups
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-022-04905-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Steven Nahmias & William P. Pierskalla, 1973. "Optimal ordering policies for a product that perishes in two periods subject to stochastic demand," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(2), pages 207-229, June.
- Fahimnia, Behnam & Jabbarzadeh, Armin & Ghavamifar, Ali & Bell, Michael, 2017. "Supply chain design for efficient and effective blood supply in disasters," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 700-709.
- Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
- Gunpinar, Serkan & Centeno, Grisselle, 2016. "An integer programming approach to the bloodmobile routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 94-115.
- Gregory P. Prastacos, 1984. "Blood Inventory Management: An Overview of Theory and Practice," Management Science, INFORMS, vol. 30(7), pages 777-800, July.
- Şahinyazan, Feyza Güliz & Kara, Bahar Y. & Taner, Mehmet Rüştü, 2015. "Selective vehicle routing for a mobile blood donation system," European Journal of Operational Research, Elsevier, vol. 245(1), pages 22-34.
- Ramezanian, Reza & Behboodi, Zahra, 2017. "Blood supply chain network design under uncertainties in supply and demand considering social aspects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 69-82.
- Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
- Soheyl Khalilpourazari & Shima Soltanzadeh & Gerhard-Wilhelm Weber & Sankar Kumar Roy, 2020. "Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study," Annals of Operations Research, Springer, vol. 289(1), pages 123-152, June.
- Duan, Qinglin & Liao, T. Warren, 2014. "Optimization of blood supply chain with shortened shelf lives and ABO compatibility," International Journal of Production Economics, Elsevier, vol. 153(C), pages 113-129.
- Beliën, Jeroen & Forcé, Hein, 2012. "Supply chain management of blood products: A literature review," European Journal of Operational Research, Elsevier, vol. 217(1), pages 1-16.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
- Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
- Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
- Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
- Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.
- Elmira Farrokhizadeh & Seyed Amin Seyfi-Shishavan & Sule Itir Satoglu, 2022. "Blood supply planning during natural disasters under uncertainty: a novel bi-objective model and an application for red crescent," Annals of Operations Research, Springer, vol. 319(1), pages 73-113, December.
- Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
- Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
- Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
- Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
- Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
- Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
- Soheyl Khalilpourazari & Shima Soltanzadeh & Gerhard-Wilhelm Weber & Sankar Kumar Roy, 2020. "Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study," Annals of Operations Research, Springer, vol. 289(1), pages 123-152, June.
- Sara Cheraghi & Seyyed-Mahdi Hosseini-Motlagh, 2020. "Responsive and reliable injured-oriented blood supply chain for disaster relief: a real case study," Annals of Operations Research, Springer, vol. 291(1), pages 129-167, August.
- Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
- Gilani Larimi, Niloofar & Yaghoubi, Saeed & Hosseini-Motlagh, Seyyed-Mahdi, 2019. "Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
- Seyyed-Mahdi Hosseini-Motlagh & Niloofar Gilani Larimi & Maryam Oveysi Nejad, 2022. "A qualitative, patient-centered perspective toward plasma products supply chain network design with risk controlling," Operational Research, Springer, vol. 22(1), pages 779-824, March.
- Mohamadreza Fazli-Khalaf & Soheyl Khalilpourazari & Mohammad Mohammadi, 2019. "Mixed robust possibilistic flexible chance constraint optimization model for emergency blood supply chain network design," Annals of Operations Research, Springer, vol. 283(1), pages 1079-1109, December.
- Javid Ghahremani-Nahr & Ramez Kian & Ehsan Sabet & Vahid Akbari, 2022. "A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach," Operational Research, Springer, vol. 22(5), pages 4685-4723, November.
- Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
More about this item
Keywords
Blood collection; Inventory routing problem; Post-disaster relief logistics; Bloodmobile; Drone; Blood groups; Two-stage stochastic programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:321:y:2023:i:1:d:10.1007_s10479-022-04905-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.